Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385756698> ?p ?o ?g. }
- W4385756698 endingPage "99" @default.
- W4385756698 startingPage "27" @default.
- W4385756698 abstract "This survey hinges on the interplay between regularity and approximation for linear and quasilinear fractional elliptic problems on Lipschitz domains. For the linear Dirichlet integral Laplacian, after briefly recalling Hölder regularity and applications, we discuss novel optimal shift theorems in Besov spaces and their Sobolev counterparts. These results extend to problems with finite horizon and are instrumental for the subsequent error analysis. Moreover, we dwell on extensions of Besov regularity to the fractional p-Laplacian and review the regularity of fractional minimal graphs and stickiness. We discretize these problems using continuous piecewise linear finite elements and derive global and local error estimates for linear problems, thereby improving some existing error estimates for both quasi-uniform and graded meshes. We also present a BPX preconditioner which turns out to be robust with respect to both the fractional order and the number of levels. We conclude with the discretization of fractional quasilinear problems and their error analysis. We illustrate the theory with several illuminating numerical experiments." @default.
- W4385756698 created "2023-08-12" @default.
- W4385756698 creator A5000833969 @default.
- W4385756698 creator A5012486505 @default.
- W4385756698 creator A5040883953 @default.
- W4385756698 date "2023-01-01" @default.
- W4385756698 modified "2023-10-18" @default.
- W4385756698 title "Fractional Elliptic Problems on Lipschitz Domains: Regularity and Approximation" @default.
- W4385756698 cites W1531503646 @default.
- W4385756698 cites W1816275442 @default.
- W4385756698 cites W184188664 @default.
- W4385756698 cites W1972724889 @default.
- W4385756698 cites W1978321922 @default.
- W4385756698 cites W1981146595 @default.
- W4385756698 cites W1984898295 @default.
- W4385756698 cites W1994726900 @default.
- W4385756698 cites W2001012793 @default.
- W4385756698 cites W2001776629 @default.
- W4385756698 cites W2010432344 @default.
- W4385756698 cites W2032532622 @default.
- W4385756698 cites W2044300169 @default.
- W4385756698 cites W2044959876 @default.
- W4385756698 cites W2050871234 @default.
- W4385756698 cites W2055496542 @default.
- W4385756698 cites W2057410521 @default.
- W4385756698 cites W2067411679 @default.
- W4385756698 cites W2068042821 @default.
- W4385756698 cites W2072045197 @default.
- W4385756698 cites W2074236982 @default.
- W4385756698 cites W2075653738 @default.
- W4385756698 cites W2078495712 @default.
- W4385756698 cites W2079514759 @default.
- W4385756698 cites W2081212234 @default.
- W4385756698 cites W2084743165 @default.
- W4385756698 cites W2087321746 @default.
- W4385756698 cites W2093971242 @default.
- W4385756698 cites W2094695561 @default.
- W4385756698 cites W2115218270 @default.
- W4385756698 cites W2134061862 @default.
- W4385756698 cites W2231123424 @default.
- W4385756698 cites W2235893122 @default.
- W4385756698 cites W2244987555 @default.
- W4385756698 cites W2264544667 @default.
- W4385756698 cites W2287409203 @default.
- W4385756698 cites W2291079924 @default.
- W4385756698 cites W2326438536 @default.
- W4385756698 cites W2329144655 @default.
- W4385756698 cites W2342026602 @default.
- W4385756698 cites W2511053218 @default.
- W4385756698 cites W2532859297 @default.
- W4385756698 cites W2594330724 @default.
- W4385756698 cites W2729299405 @default.
- W4385756698 cites W2735733562 @default.
- W4385756698 cites W2749611175 @default.
- W4385756698 cites W2769258003 @default.
- W4385756698 cites W2835226704 @default.
- W4385756698 cites W2925178800 @default.
- W4385756698 cites W2944146952 @default.
- W4385756698 cites W2948846409 @default.
- W4385756698 cites W2957713991 @default.
- W4385756698 cites W2962820396 @default.
- W4385756698 cites W2963433821 @default.
- W4385756698 cites W2963462097 @default.
- W4385756698 cites W2963537274 @default.
- W4385756698 cites W2963714816 @default.
- W4385756698 cites W2963805456 @default.
- W4385756698 cites W2963907193 @default.
- W4385756698 cites W2979016541 @default.
- W4385756698 cites W2981191835 @default.
- W4385756698 cites W2982546823 @default.
- W4385756698 cites W2987877651 @default.
- W4385756698 cites W2993443997 @default.
- W4385756698 cites W3000270310 @default.
- W4385756698 cites W3005347120 @default.
- W4385756698 cites W3013999355 @default.
- W4385756698 cites W3024165867 @default.
- W4385756698 cites W3031532653 @default.
- W4385756698 cites W3033352716 @default.
- W4385756698 cites W3033406993 @default.
- W4385756698 cites W3046271646 @default.
- W4385756698 cites W3082716427 @default.
- W4385756698 cites W3100395783 @default.
- W4385756698 cites W3102131659 @default.
- W4385756698 cites W3102519793 @default.
- W4385756698 cites W3105657163 @default.
- W4385756698 cites W3112390046 @default.
- W4385756698 cites W3118381374 @default.
- W4385756698 cites W3123275897 @default.
- W4385756698 cites W3181328114 @default.
- W4385756698 cites W3190939655 @default.
- W4385756698 cites W3193999072 @default.
- W4385756698 cites W3197955615 @default.
- W4385756698 cites W3201368104 @default.
- W4385756698 cites W3201682835 @default.
- W4385756698 cites W3204708751 @default.
- W4385756698 cites W4292079583 @default.
- W4385756698 cites W4309830205 @default.
- W4385756698 cites W4310885975 @default.