Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385757408> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W4385757408 endingPage "14" @default.
- W4385757408 startingPage "1" @default.
- W4385757408 abstract "Density peaks clustering algorithm (DP) has difficulty in clustering large-scale data, because it requires the distance matrix to compute the density and δ -distance for each object, which has O(n2) time complexity. Granular ball (GB) is a coarse-grained representation of data. It is based on the fact that an object and its local neighbors have similar distribution and they have high possibility of belonging to the same class. It has been introduced into supervised learning by Xia et al. to improve the efficiency of supervised learning, such as support vector machine, k -nearest neighbor classification, rough set, etc. Inspired by the idea of GB, we introduce it into unsupervised learning for the first time and propose a GB-based DP algorithm, called GB-DP. First, it generates GBs from the original data with an unsupervised partitioning method. Then, it defines the density of GBs, instead of the density of objects, according to the centers, radius, and distances between its members and centers, without setting any parameters. After that, it computes the distance between the centers of GBs as the distance between GBs and defines the δ -distance of GBs. Finally, it uses GBs' density and δ -distance to plot the decision graph, employs DP algorithm to cluster them, and expands the clustering result to the original data. Since there is no need to calculate the distance between any two objects and the number of GBs is far less than the scale of a data, it greatly reduces the running time of DP algorithm. By comparing with k -means, ball k -means, DP, DPC-KNN-PCA, FastDPeak, and DLORE-DP, GB-DP can get similar or even better clustering results in much less running time without setting any parameters. The source code is available at https://github.com/DongdongCheng/GB-DP." @default.
- W4385757408 created "2023-08-12" @default.
- W4385757408 creator A5003432793 @default.
- W4385757408 creator A5005710463 @default.
- W4385757408 creator A5017193282 @default.
- W4385757408 creator A5056822708 @default.
- W4385757408 creator A5060987351 @default.
- W4385757408 creator A5061527255 @default.
- W4385757408 date "2023-01-01" @default.
- W4385757408 modified "2023-09-26" @default.
- W4385757408 title "A Fast Granular-Ball-Based Density Peaks Clustering Algorithm for Large-Scale Data" @default.
- W4385757408 doi "https://doi.org/10.1109/tnnls.2023.3300916" @default.
- W4385757408 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37566496" @default.
- W4385757408 hasPublicationYear "2023" @default.
- W4385757408 type Work @default.
- W4385757408 citedByCount "0" @default.
- W4385757408 crossrefType "journal-article" @default.
- W4385757408 hasAuthorship W4385757408A5003432793 @default.
- W4385757408 hasAuthorship W4385757408A5005710463 @default.
- W4385757408 hasAuthorship W4385757408A5017193282 @default.
- W4385757408 hasAuthorship W4385757408A5056822708 @default.
- W4385757408 hasAuthorship W4385757408A5060987351 @default.
- W4385757408 hasAuthorship W4385757408A5061527255 @default.
- W4385757408 hasConcept C111208986 @default.
- W4385757408 hasConcept C11413529 @default.
- W4385757408 hasConcept C121332964 @default.
- W4385757408 hasConcept C153180895 @default.
- W4385757408 hasConcept C154945302 @default.
- W4385757408 hasConcept C21080849 @default.
- W4385757408 hasConcept C2778755073 @default.
- W4385757408 hasConcept C33923547 @default.
- W4385757408 hasConcept C41008148 @default.
- W4385757408 hasConcept C62520636 @default.
- W4385757408 hasConcept C73555534 @default.
- W4385757408 hasConcept C8038995 @default.
- W4385757408 hasConceptScore W4385757408C111208986 @default.
- W4385757408 hasConceptScore W4385757408C11413529 @default.
- W4385757408 hasConceptScore W4385757408C121332964 @default.
- W4385757408 hasConceptScore W4385757408C153180895 @default.
- W4385757408 hasConceptScore W4385757408C154945302 @default.
- W4385757408 hasConceptScore W4385757408C21080849 @default.
- W4385757408 hasConceptScore W4385757408C2778755073 @default.
- W4385757408 hasConceptScore W4385757408C33923547 @default.
- W4385757408 hasConceptScore W4385757408C41008148 @default.
- W4385757408 hasConceptScore W4385757408C62520636 @default.
- W4385757408 hasConceptScore W4385757408C73555534 @default.
- W4385757408 hasConceptScore W4385757408C8038995 @default.
- W4385757408 hasLocation W43857574081 @default.
- W4385757408 hasLocation W43857574082 @default.
- W4385757408 hasOpenAccess W4385757408 @default.
- W4385757408 hasPrimaryLocation W43857574081 @default.
- W4385757408 hasRelatedWork W2033914206 @default.
- W4385757408 hasRelatedWork W2042327336 @default.
- W4385757408 hasRelatedWork W2046077695 @default.
- W4385757408 hasRelatedWork W2146076056 @default.
- W4385757408 hasRelatedWork W2163831990 @default.
- W4385757408 hasRelatedWork W2292254049 @default.
- W4385757408 hasRelatedWork W2378160586 @default.
- W4385757408 hasRelatedWork W2592385986 @default.
- W4385757408 hasRelatedWork W2886643713 @default.
- W4385757408 hasRelatedWork W3003836766 @default.
- W4385757408 isParatext "false" @default.
- W4385757408 isRetracted "false" @default.
- W4385757408 workType "article" @default.