Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385757483> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W4385757483 endingPage "11" @default.
- W4385757483 startingPage "1" @default.
- W4385757483 abstract "Text attribute person search aims to identify the particular pedestrian by textual attribute information. Compared to person re-identification tasks which requires imagery samples as its query, text attribute person search is more useful under the circumstance where only witness is available. Most existing text attribute person search methods focus on improving the matching correlation and alignments by learning better representations of person-attribute instance pairs, with few consideration of the latent correlations between attributes. In this work, we propose a graph convolutional network (GCN) and pseudo-label-based text attribute person search method. Concretely, the model directly constructs the attribute correlations by label co-occurrence probability, in which the nodes are represented by attribute embedding and edges are by the filtered correlation matrix of attribute labels. In order to obtain better representations, we combine the cross-attention module (CAM) and the GCN. Furthermore, to address the unseen attribute relationships, we update the edge information through the instances through testing set with high predicted probability thus to better adapt the attribute distribution. Extensive experiments illustrate that our model outperforms the existing state-of-the-art methods on publicly available person search benchmarks: Market-1501 and PETA." @default.
- W4385757483 created "2023-08-12" @default.
- W4385757483 creator A5011324535 @default.
- W4385757483 creator A5042507268 @default.
- W4385757483 creator A5052493382 @default.
- W4385757483 creator A5062655544 @default.
- W4385757483 date "2023-01-01" @default.
- W4385757483 modified "2023-10-18" @default.
- W4385757483 title "Address the Unseen Relationships: Attribute Correlations in Text Attribute Person Search" @default.
- W4385757483 doi "https://doi.org/10.1109/tnnls.2023.3300582" @default.
- W4385757483 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37566495" @default.
- W4385757483 hasPublicationYear "2023" @default.
- W4385757483 type Work @default.
- W4385757483 citedByCount "0" @default.
- W4385757483 crossrefType "journal-article" @default.
- W4385757483 hasAuthorship W4385757483A5011324535 @default.
- W4385757483 hasAuthorship W4385757483A5042507268 @default.
- W4385757483 hasAuthorship W4385757483A5052493382 @default.
- W4385757483 hasAuthorship W4385757483A5062655544 @default.
- W4385757483 hasConcept C105795698 @default.
- W4385757483 hasConcept C111012933 @default.
- W4385757483 hasConcept C119857082 @default.
- W4385757483 hasConcept C124101348 @default.
- W4385757483 hasConcept C12692103 @default.
- W4385757483 hasConcept C132525143 @default.
- W4385757483 hasConcept C154945302 @default.
- W4385757483 hasConcept C165064840 @default.
- W4385757483 hasConcept C177264268 @default.
- W4385757483 hasConcept C199360897 @default.
- W4385757483 hasConcept C33923547 @default.
- W4385757483 hasConcept C41008148 @default.
- W4385757483 hasConcept C75814411 @default.
- W4385757483 hasConcept C80444323 @default.
- W4385757483 hasConceptScore W4385757483C105795698 @default.
- W4385757483 hasConceptScore W4385757483C111012933 @default.
- W4385757483 hasConceptScore W4385757483C119857082 @default.
- W4385757483 hasConceptScore W4385757483C124101348 @default.
- W4385757483 hasConceptScore W4385757483C12692103 @default.
- W4385757483 hasConceptScore W4385757483C132525143 @default.
- W4385757483 hasConceptScore W4385757483C154945302 @default.
- W4385757483 hasConceptScore W4385757483C165064840 @default.
- W4385757483 hasConceptScore W4385757483C177264268 @default.
- W4385757483 hasConceptScore W4385757483C199360897 @default.
- W4385757483 hasConceptScore W4385757483C33923547 @default.
- W4385757483 hasConceptScore W4385757483C41008148 @default.
- W4385757483 hasConceptScore W4385757483C75814411 @default.
- W4385757483 hasConceptScore W4385757483C80444323 @default.
- W4385757483 hasFunder F4320321001 @default.
- W4385757483 hasFunder F4320335787 @default.
- W4385757483 hasLocation W43857574831 @default.
- W4385757483 hasLocation W43857574832 @default.
- W4385757483 hasOpenAccess W4385757483 @default.
- W4385757483 hasPrimaryLocation W43857574831 @default.
- W4385757483 hasRelatedWork W1560151003 @default.
- W4385757483 hasRelatedWork W2162114398 @default.
- W4385757483 hasRelatedWork W2349579867 @default.
- W4385757483 hasRelatedWork W2349833351 @default.
- W4385757483 hasRelatedWork W2370759495 @default.
- W4385757483 hasRelatedWork W2961085424 @default.
- W4385757483 hasRelatedWork W3180573364 @default.
- W4385757483 hasRelatedWork W4286629047 @default.
- W4385757483 hasRelatedWork W4306674287 @default.
- W4385757483 hasRelatedWork W4224009465 @default.
- W4385757483 isParatext "false" @default.
- W4385757483 isRetracted "false" @default.
- W4385757483 workType "article" @default.