Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385757748> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4385757748 endingPage "11" @default.
- W4385757748 startingPage "1" @default.
- W4385757748 abstract "With the emergence of digitalization technology, digital twin bridges the gap between physical and virtual worlds in industrial production with synchronization, reliability, and fidelity. The manufacturing process of complex products needs multiple working procedures, where novel industrial parts occur, causing scenes to be variable for robots to perceive and grasp. Due to the geometric difference among objects in various categories, it is significant to empower robotic systems with the capability of continuous learning for grasp detection in variable scenes. Therefore, a digital twin robotic system is proposed to realize bidirectional real-time data interaction and synchronization in the physical and virtual worlds. In this digital twin robotic system, a synthetic grasp detection dataset composed of industrial parts is built for an industrial grasping task. Besides, a novel deep learning method, adaptive spatial-awareness grasp network with a novel cc, is proposed to realize end-to-end 7-DoF grasp detection for industrial objects. In addition, a continuous learning strategy is proposed for 7-DoF grasp pose detection without catastrophic forgetting in variable scenes. Experiments in both virtual and physical worlds have demonstrated the effectiveness of our method for potential industrial implementation, and the average grasping success rate reaches 91% and 88% for novel objects in the virtual and physical worlds, respectively." @default.
- W4385757748 created "2023-08-12" @default.
- W4385757748 creator A5027725400 @default.
- W4385757748 creator A5028426177 @default.
- W4385757748 creator A5043973941 @default.
- W4385757748 creator A5056972984 @default.
- W4385757748 date "2023-01-01" @default.
- W4385757748 modified "2023-10-16" @default.
- W4385757748 title "Digital Twin Robotic System With Continuous Learning for Grasp Detection in Variable Scenes" @default.
- W4385757748 doi "https://doi.org/10.1109/tie.2023.3299049" @default.
- W4385757748 hasPublicationYear "2023" @default.
- W4385757748 type Work @default.
- W4385757748 citedByCount "0" @default.
- W4385757748 crossrefType "journal-article" @default.
- W4385757748 hasAuthorship W4385757748A5027725400 @default.
- W4385757748 hasAuthorship W4385757748A5028426177 @default.
- W4385757748 hasAuthorship W4385757748A5043973941 @default.
- W4385757748 hasAuthorship W4385757748A5056972984 @default.
- W4385757748 hasConcept C107457646 @default.
- W4385757748 hasConcept C111919701 @default.
- W4385757748 hasConcept C127162648 @default.
- W4385757748 hasConcept C134306372 @default.
- W4385757748 hasConcept C138885662 @default.
- W4385757748 hasConcept C154945302 @default.
- W4385757748 hasConcept C171268870 @default.
- W4385757748 hasConcept C182365436 @default.
- W4385757748 hasConcept C194969405 @default.
- W4385757748 hasConcept C199360897 @default.
- W4385757748 hasConcept C2776126113 @default.
- W4385757748 hasConcept C2778562939 @default.
- W4385757748 hasConcept C31258907 @default.
- W4385757748 hasConcept C31972630 @default.
- W4385757748 hasConcept C33923547 @default.
- W4385757748 hasConcept C41008148 @default.
- W4385757748 hasConcept C41895202 @default.
- W4385757748 hasConcept C7149132 @default.
- W4385757748 hasConcept C90509273 @default.
- W4385757748 hasConcept C98045186 @default.
- W4385757748 hasConceptScore W4385757748C107457646 @default.
- W4385757748 hasConceptScore W4385757748C111919701 @default.
- W4385757748 hasConceptScore W4385757748C127162648 @default.
- W4385757748 hasConceptScore W4385757748C134306372 @default.
- W4385757748 hasConceptScore W4385757748C138885662 @default.
- W4385757748 hasConceptScore W4385757748C154945302 @default.
- W4385757748 hasConceptScore W4385757748C171268870 @default.
- W4385757748 hasConceptScore W4385757748C182365436 @default.
- W4385757748 hasConceptScore W4385757748C194969405 @default.
- W4385757748 hasConceptScore W4385757748C199360897 @default.
- W4385757748 hasConceptScore W4385757748C2776126113 @default.
- W4385757748 hasConceptScore W4385757748C2778562939 @default.
- W4385757748 hasConceptScore W4385757748C31258907 @default.
- W4385757748 hasConceptScore W4385757748C31972630 @default.
- W4385757748 hasConceptScore W4385757748C33923547 @default.
- W4385757748 hasConceptScore W4385757748C41008148 @default.
- W4385757748 hasConceptScore W4385757748C41895202 @default.
- W4385757748 hasConceptScore W4385757748C7149132 @default.
- W4385757748 hasConceptScore W4385757748C90509273 @default.
- W4385757748 hasConceptScore W4385757748C98045186 @default.
- W4385757748 hasFunder F4320321001 @default.
- W4385757748 hasLocation W43857577481 @default.
- W4385757748 hasOpenAccess W4385757748 @default.
- W4385757748 hasPrimaryLocation W43857577481 @default.
- W4385757748 hasRelatedWork W1910101490 @default.
- W4385757748 hasRelatedWork W2014383725 @default.
- W4385757748 hasRelatedWork W2061219186 @default.
- W4385757748 hasRelatedWork W2389377526 @default.
- W4385757748 hasRelatedWork W2722844651 @default.
- W4385757748 hasRelatedWork W2985724587 @default.
- W4385757748 hasRelatedWork W3049181615 @default.
- W4385757748 hasRelatedWork W3185561939 @default.
- W4385757748 hasRelatedWork W4211070486 @default.
- W4385757748 hasRelatedWork W4293869118 @default.
- W4385757748 isParatext "false" @default.
- W4385757748 isRetracted "false" @default.
- W4385757748 workType "article" @default.