Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385759790> ?p ?o ?g. }
- W4385759790 endingPage "2050" @default.
- W4385759790 startingPage "2050" @default.
- W4385759790 abstract "Solar power systems, such as photovoltaic (PV) systems, have become a necessary feature of zero-energy buildings because efficient building design and construction materials alone are not sufficient to meet the building’s energy consumption needs. However, solar power generation is subject to fluctuations based on weather conditions, and these fluctuations are higher than other renewable energy sources. This phenomenon has emphasized the importance of predicting solar power generation through weather forecasting. In this paper, an Automatic Machine Learning (AML)-based method is proposed to create multiple prediction models based on solar power generation and weather data. Then, the best model to predict daily solar power generation is selected from these models. The solar power generation data used in this study was obtained from an actual solar system installed in a zero-energy building, while the weather data was obtained from open data provided by the Korea Meteorological Administration. In addition, To verify the validity of the proposed method, an ideal data model with high accuracy but difficult to apply to the actual system and a comparison model with a relatively low accuracy but suitable for application to the actual system were created. The performance was compared with the model created by the proposed method. Based on the validation process, the proposed approach shows 5–10% higher prediction accuracies compared to the comparison model." @default.
- W4385759790 created "2023-08-12" @default.
- W4385759790 creator A5000265496 @default.
- W4385759790 creator A5017549716 @default.
- W4385759790 creator A5045813154 @default.
- W4385759790 creator A5051243449 @default.
- W4385759790 creator A5067757749 @default.
- W4385759790 creator A5069084187 @default.
- W4385759790 creator A5072804506 @default.
- W4385759790 date "2023-08-11" @default.
- W4385759790 modified "2023-10-18" @default.
- W4385759790 title "Enhancing Zero-Energy Building Operations for ESG: Accurate Solar Power Prediction through Automatic Machine Learning" @default.
- W4385759790 cites W1493534351 @default.
- W4385759790 cites W2001863701 @default.
- W4385759790 cites W2021533732 @default.
- W4385759790 cites W2087185628 @default.
- W4385759790 cites W2173259274 @default.
- W4385759790 cites W2193435872 @default.
- W4385759790 cites W2469734051 @default.
- W4385759790 cites W2792131305 @default.
- W4385759790 cites W2802184575 @default.
- W4385759790 cites W2891505394 @default.
- W4385759790 cites W2906520540 @default.
- W4385759790 cites W2920927670 @default.
- W4385759790 cites W2948122208 @default.
- W4385759790 cites W2964321282 @default.
- W4385759790 cites W2968860972 @default.
- W4385759790 cites W2968913563 @default.
- W4385759790 cites W3003990246 @default.
- W4385759790 cites W3019098108 @default.
- W4385759790 cites W3032086959 @default.
- W4385759790 cites W3036397480 @default.
- W4385759790 cites W3036955727 @default.
- W4385759790 cites W3037852608 @default.
- W4385759790 cites W3040775906 @default.
- W4385759790 cites W3081884123 @default.
- W4385759790 cites W3088122083 @default.
- W4385759790 cites W3115781397 @default.
- W4385759790 cites W3131092456 @default.
- W4385759790 cites W3134363778 @default.
- W4385759790 cites W3174025491 @default.
- W4385759790 cites W3207866196 @default.
- W4385759790 cites W3209431049 @default.
- W4385759790 cites W3214024050 @default.
- W4385759790 cites W4200307627 @default.
- W4385759790 cites W4200350112 @default.
- W4385759790 cites W4213308398 @default.
- W4385759790 cites W4224242546 @default.
- W4385759790 cites W4247640718 @default.
- W4385759790 cites W4310072362 @default.
- W4385759790 cites W4353067595 @default.
- W4385759790 cites W4360955451 @default.
- W4385759790 cites W613399515 @default.
- W4385759790 doi "https://doi.org/10.3390/buildings13082050" @default.
- W4385759790 hasPublicationYear "2023" @default.
- W4385759790 type Work @default.
- W4385759790 citedByCount "0" @default.
- W4385759790 crossrefType "journal-article" @default.
- W4385759790 hasAuthorship W4385759790A5000265496 @default.
- W4385759790 hasAuthorship W4385759790A5017549716 @default.
- W4385759790 hasAuthorship W4385759790A5045813154 @default.
- W4385759790 hasAuthorship W4385759790A5051243449 @default.
- W4385759790 hasAuthorship W4385759790A5067757749 @default.
- W4385759790 hasAuthorship W4385759790A5069084187 @default.
- W4385759790 hasAuthorship W4385759790A5072804506 @default.
- W4385759790 hasBestOaLocation W43857597901 @default.
- W4385759790 hasConcept C111919701 @default.
- W4385759790 hasConcept C119599485 @default.
- W4385759790 hasConcept C121332964 @default.
- W4385759790 hasConcept C127413603 @default.
- W4385759790 hasConcept C163258240 @default.
- W4385759790 hasConcept C184978287 @default.
- W4385759790 hasConcept C188573790 @default.
- W4385759790 hasConcept C2777618391 @default.
- W4385759790 hasConcept C41008148 @default.
- W4385759790 hasConcept C41291067 @default.
- W4385759790 hasConcept C423512 @default.
- W4385759790 hasConcept C44154836 @default.
- W4385759790 hasConcept C541104983 @default.
- W4385759790 hasConcept C62520636 @default.
- W4385759790 hasConcept C98045186 @default.
- W4385759790 hasConceptScore W4385759790C111919701 @default.
- W4385759790 hasConceptScore W4385759790C119599485 @default.
- W4385759790 hasConceptScore W4385759790C121332964 @default.
- W4385759790 hasConceptScore W4385759790C127413603 @default.
- W4385759790 hasConceptScore W4385759790C163258240 @default.
- W4385759790 hasConceptScore W4385759790C184978287 @default.
- W4385759790 hasConceptScore W4385759790C188573790 @default.
- W4385759790 hasConceptScore W4385759790C2777618391 @default.
- W4385759790 hasConceptScore W4385759790C41008148 @default.
- W4385759790 hasConceptScore W4385759790C41291067 @default.
- W4385759790 hasConceptScore W4385759790C423512 @default.
- W4385759790 hasConceptScore W4385759790C44154836 @default.
- W4385759790 hasConceptScore W4385759790C541104983 @default.
- W4385759790 hasConceptScore W4385759790C62520636 @default.
- W4385759790 hasConceptScore W4385759790C98045186 @default.
- W4385759790 hasFunder F4320335199 @default.
- W4385759790 hasIssue "8" @default.