Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385776210> ?p ?o ?g. }
- W4385776210 endingPage "120302" @default.
- W4385776210 startingPage "120302" @default.
- W4385776210 abstract "Resting-state functional connectivity (RSFC) is altered across various psychiatric disorders. Brain network modeling (BNM) has the potential to reveal the neurobiological underpinnings of such abnormalities by dynamically modeling the structure-function relationship and examining biologically relevant parameters after fitting the models with real data. Although innovative BNM approaches have been developed, two main issues need to be further addressed. First, previous BNM approaches are primarily limited to simulating noise-driven dynamics near a chosen attractor (or a stable brain state). An alternative approach is to examine multi(or cross)-attractor dynamics, which can be used to better capture non-stationarity and switching between states in the resting brain. Second, previous BNM work is limited to characterizing one disorder at a time. Given the large degree of co-morbidity across psychiatric disorders, comparing BNMs across disorders might provide a novel avenue to generate insights regarding the dynamical features that are common across (vs. specific to) disorders. Here, we address these issues by (1) examining the layout of the attractor repertoire over the entire multi-attractor landscape using a recently developed cross-attractor BNM approach; and (2) characterizing and comparing multiple disorders (schizophrenia, bipolar, and ADHD) with healthy controls using an openly available and moderately large multimodal dataset from the UCLA Consortium for Neuropsychiatric Phenomics. Both global and local differences were observed across disorders. Specifically, the global coupling between regions was significantly decreased in schizophrenia patients relative to healthy controls. At the same time, the ratio between local excitation and inhibition was significantly higher in the schizophrenia group than the ADHD group. In line with these results, the schizophrenia group had the lowest switching costs (energy gaps) across groups for several networks including the default mode network. Paired comparison also showed that schizophrenia patients had significantly lower energy gaps than healthy controls for the somatomotor and visual networks. Overall, this study provides preliminary evidence supporting transdiagnostic multi-attractor BNM approaches to better understand psychiatric disorders' pathophysiology." @default.
- W4385776210 created "2023-08-12" @default.
- W4385776210 creator A5039618500 @default.
- W4385776210 creator A5045525642 @default.
- W4385776210 creator A5061847020 @default.
- W4385776210 date "2023-10-01" @default.
- W4385776210 modified "2023-10-17" @default.
- W4385776210 title "Cross-attractor modeling of resting-state functional connectivity in psychiatric disorders" @default.
- W4385776210 cites W1963789865 @default.
- W4385776210 cites W1965322550 @default.
- W4385776210 cites W1968187292 @default.
- W4385776210 cites W1968700646 @default.
- W4385776210 cites W1984453610 @default.
- W4385776210 cites W1995138343 @default.
- W4385776210 cites W2001611992 @default.
- W4385776210 cites W2016354087 @default.
- W4385776210 cites W2024317089 @default.
- W4385776210 cites W2027063265 @default.
- W4385776210 cites W2027299889 @default.
- W4385776210 cites W2044477259 @default.
- W4385776210 cites W2062525177 @default.
- W4385776210 cites W2064965260 @default.
- W4385776210 cites W2067456724 @default.
- W4385776210 cites W2082352870 @default.
- W4385776210 cites W2094435366 @default.
- W4385776210 cites W2096705406 @default.
- W4385776210 cites W2101135654 @default.
- W4385776210 cites W2103592460 @default.
- W4385776210 cites W2104016179 @default.
- W4385776210 cites W2117340355 @default.
- W4385776210 cites W2127186958 @default.
- W4385776210 cites W2131181615 @default.
- W4385776210 cites W2133323742 @default.
- W4385776210 cites W2148015168 @default.
- W4385776210 cites W2159929956 @default.
- W4385776210 cites W2165793012 @default.
- W4385776210 cites W2170702893 @default.
- W4385776210 cites W2203684141 @default.
- W4385776210 cites W2320983896 @default.
- W4385776210 cites W2498492890 @default.
- W4385776210 cites W2587060638 @default.
- W4385776210 cites W2590144118 @default.
- W4385776210 cites W2597410197 @default.
- W4385776210 cites W2728707994 @default.
- W4385776210 cites W2735972046 @default.
- W4385776210 cites W2766963537 @default.
- W4385776210 cites W2767050687 @default.
- W4385776210 cites W2895588666 @default.
- W4385776210 cites W2909745138 @default.
- W4385776210 cites W2936329992 @default.
- W4385776210 cites W2945129130 @default.
- W4385776210 cites W2949123561 @default.
- W4385776210 cites W2950254084 @default.
- W4385776210 cites W2951583631 @default.
- W4385776210 cites W2952766316 @default.
- W4385776210 cites W2955501090 @default.
- W4385776210 cites W2969721658 @default.
- W4385776210 cites W2970898057 @default.
- W4385776210 cites W3036765640 @default.
- W4385776210 cites W3084035636 @default.
- W4385776210 cites W3111964079 @default.
- W4385776210 cites W3114072530 @default.
- W4385776210 cites W3119727021 @default.
- W4385776210 cites W3127571002 @default.
- W4385776210 cites W3137272919 @default.
- W4385776210 cites W3156280969 @default.
- W4385776210 cites W4223917943 @default.
- W4385776210 cites W4283120220 @default.
- W4385776210 cites W4295750005 @default.
- W4385776210 cites W4312179304 @default.
- W4385776210 cites W4324307181 @default.
- W4385776210 doi "https://doi.org/10.1016/j.neuroimage.2023.120302" @default.
- W4385776210 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37579998" @default.
- W4385776210 hasPublicationYear "2023" @default.
- W4385776210 type Work @default.
- W4385776210 citedByCount "0" @default.
- W4385776210 crossrefType "journal-article" @default.
- W4385776210 hasAuthorship W4385776210A5039618500 @default.
- W4385776210 hasAuthorship W4385776210A5045525642 @default.
- W4385776210 hasAuthorship W4385776210A5061847020 @default.
- W4385776210 hasBestOaLocation W43857762101 @default.
- W4385776210 hasConcept C118552586 @default.
- W4385776210 hasConcept C134306372 @default.
- W4385776210 hasConcept C154945302 @default.
- W4385776210 hasConcept C15744967 @default.
- W4385776210 hasConcept C164380108 @default.
- W4385776210 hasConcept C169760540 @default.
- W4385776210 hasConcept C2776412080 @default.
- W4385776210 hasConcept C33923547 @default.
- W4385776210 hasConcept C41008148 @default.
- W4385776210 hasConcept C66324658 @default.
- W4385776210 hasConceptScore W4385776210C118552586 @default.
- W4385776210 hasConceptScore W4385776210C134306372 @default.
- W4385776210 hasConceptScore W4385776210C154945302 @default.
- W4385776210 hasConceptScore W4385776210C15744967 @default.
- W4385776210 hasConceptScore W4385776210C164380108 @default.
- W4385776210 hasConceptScore W4385776210C169760540 @default.
- W4385776210 hasConceptScore W4385776210C2776412080 @default.