Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385777624> ?p ?o ?g. }
- W4385777624 endingPage "95" @default.
- W4385777624 startingPage "86" @default.
- W4385777624 abstract "10-Hz repetitive transcranial magnetic stimulation(rTMS) and intermittent theta-burst stimulation(iTBS) over left prefrontal cortex are FDA-approved, effective options for treatment-resistant depression (TRD). Optimal prediction models for iTBS and rTMS remain elusive. Therefore, our primary objective was to compare prediction accuracy between classification by frontal theta activity alone and machine learning(ML) models by linear and non-linear frontal signals. The second objective was to study an optimal ML model for predicting responses to rTMS and iTBS.Two rTMS and iTBS datasets (n = 163) were used: one randomized controlled trial dataset (RCTD; n = 96) and one outpatient dataset (OPD; n = 67). Frontal theta and non-linear EEG features that reflect trend, stability, and complexity were extracted. Pretreatment frontal EEG and ML algorithms, including classical support vector machine(SVM), random forest(RF), XGBoost, and CatBoost, were analyzed. Responses were defined as ≥50 % depression improvement after treatment. Response rates between those with and without pretreatment prediction in another independent outpatient cohort (n = 208) were compared.Prediction accuracy using combined EEG features by SVM was better than frontal theta by logistic regression. The accuracy for OPD patients significantly dropped using the RCTD-trained SVM model. Modern ML models, especially RF (rTMS = 83.3 %, iTBS = 88.9 %, p-value(ACC > NIR) < 0.05 for iTBS), performed significantly above chance and had higher accuracy than SVM using both selected features (p < 0.05, FDR corrected for multiple comparisons) or all EEG features. Response rates among those receiving prediction before treatment were significantly higher than those without prediction (p = 0.035).The first study combining linear and non-linear EEG features could accurately predict responses to left PFC iTBS. The bootstraps-based ML model (i.e., RF) had the best predictive accuracy for rTMS and iTBS." @default.
- W4385777624 created "2023-08-13" @default.
- W4385777624 creator A5000579005 @default.
- W4385777624 creator A5006136616 @default.
- W4385777624 creator A5006893740 @default.
- W4385777624 creator A5007786120 @default.
- W4385777624 creator A5016753476 @default.
- W4385777624 creator A5031059601 @default.
- W4385777624 creator A5045439679 @default.
- W4385777624 creator A5051704684 @default.
- W4385777624 date "2023-12-01" @default.
- W4385777624 modified "2023-10-09" @default.
- W4385777624 title "Prediction of antidepressant responses to non-invasive brain stimulation using frontal electroencephalogram signals: Cross-dataset comparisons and validation" @default.
- W4385777624 cites W1752063994 @default.
- W4385777624 cites W1831050183 @default.
- W4385777624 cites W1972262243 @default.
- W4385777624 cites W1972777532 @default.
- W4385777624 cites W1982416908 @default.
- W4385777624 cites W1994233698 @default.
- W4385777624 cites W1996859603 @default.
- W4385777624 cites W2007683015 @default.
- W4385777624 cites W2008353468 @default.
- W4385777624 cites W2013828141 @default.
- W4385777624 cites W2019830117 @default.
- W4385777624 cites W2041677347 @default.
- W4385777624 cites W2042105069 @default.
- W4385777624 cites W2054014670 @default.
- W4385777624 cites W2058805315 @default.
- W4385777624 cites W2061378977 @default.
- W4385777624 cites W2071949058 @default.
- W4385777624 cites W2072062726 @default.
- W4385777624 cites W2074091652 @default.
- W4385777624 cites W2076277579 @default.
- W4385777624 cites W2083920471 @default.
- W4385777624 cites W2104320863 @default.
- W4385777624 cites W2106663437 @default.
- W4385777624 cites W2106822551 @default.
- W4385777624 cites W2108289758 @default.
- W4385777624 cites W2119694325 @default.
- W4385777624 cites W2123649031 @default.
- W4385777624 cites W2131053945 @default.
- W4385777624 cites W2142308008 @default.
- W4385777624 cites W2152254020 @default.
- W4385777624 cites W2162541816 @default.
- W4385777624 cites W2257438637 @default.
- W4385777624 cites W2492513888 @default.
- W4385777624 cites W2562220447 @default.
- W4385777624 cites W2594270750 @default.
- W4385777624 cites W2761181345 @default.
- W4385777624 cites W2765484337 @default.
- W4385777624 cites W2787427645 @default.
- W4385777624 cites W2791663567 @default.
- W4385777624 cites W2797156514 @default.
- W4385777624 cites W2801280679 @default.
- W4385777624 cites W2802813481 @default.
- W4385777624 cites W2891489434 @default.
- W4385777624 cites W2911583048 @default.
- W4385777624 cites W2911964244 @default.
- W4385777624 cites W2934432900 @default.
- W4385777624 cites W2967463589 @default.
- W4385777624 cites W2981151918 @default.
- W4385777624 cites W2995108869 @default.
- W4385777624 cites W3021203631 @default.
- W4385777624 cites W3094948551 @default.
- W4385777624 cites W3095845117 @default.
- W4385777624 cites W3140854437 @default.
- W4385777624 cites W3163347207 @default.
- W4385777624 cites W4239510810 @default.
- W4385777624 cites W4309685104 @default.
- W4385777624 doi "https://doi.org/10.1016/j.jad.2023.08.059" @default.
- W4385777624 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37579885" @default.
- W4385777624 hasPublicationYear "2023" @default.
- W4385777624 type Work @default.
- W4385777624 citedByCount "0" @default.
- W4385777624 crossrefType "journal-article" @default.
- W4385777624 hasAuthorship W4385777624A5000579005 @default.
- W4385777624 hasAuthorship W4385777624A5006136616 @default.
- W4385777624 hasAuthorship W4385777624A5006893740 @default.
- W4385777624 hasAuthorship W4385777624A5007786120 @default.
- W4385777624 hasAuthorship W4385777624A5016753476 @default.
- W4385777624 hasAuthorship W4385777624A5031059601 @default.
- W4385777624 hasAuthorship W4385777624A5045439679 @default.
- W4385777624 hasAuthorship W4385777624A5051704684 @default.
- W4385777624 hasConcept C119857082 @default.
- W4385777624 hasConcept C12267149 @default.
- W4385777624 hasConcept C151956035 @default.
- W4385777624 hasConcept C153180895 @default.
- W4385777624 hasConcept C154945302 @default.
- W4385777624 hasConcept C15744967 @default.
- W4385777624 hasConcept C169258074 @default.
- W4385777624 hasConcept C169760540 @default.
- W4385777624 hasConcept C24998067 @default.
- W4385777624 hasConcept C2778581513 @default.
- W4385777624 hasConcept C41008148 @default.
- W4385777624 hasConcept C522805319 @default.
- W4385777624 hasConcept C548259974 @default.
- W4385777624 hasConcept C66905080 @default.
- W4385777624 hasConcept C71924100 @default.