Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385778331> ?p ?o ?g. }
- W4385778331 endingPage "143024" @default.
- W4385778331 startingPage "143024" @default.
- W4385778331 abstract "Electrocatalytic CO2 reduction reaction (ECO2RR) has attracted much attention for its ability to convert CO2 into valuable chemicals. However, it is still a challenge to achieve high Faradaic efficiency (FE) and high current density (j) in ECO2RR simultaneously. Vitamin B12 (VB12) has been considered as a novel and highly effective catalyst for electrocatalytic reduction of CO2 to produce CO in aqueous electrolyte, and carbon nanotubes (CNTs) have excellent conductivity. Herein, VB12/CNTs composites are deposited onto carbon paper by electrophoretic deposition. The prepared catalyst exhibits a high FE of CO (FECO) as 95.98% and the corresponding j of CO (jCO) is 40.85 mA cm−2 at −0.86 V (vs. RHE) in 0.5 M KHCO3 electrolyte. Moreover, FECO is greater than 98% in the range from −2.0 V to −2.4 V (vs. Ag/Ag+), and the maximum FECO is as high as 99.29% with a jCO of 65.53 mA cm−2 at −2.2 V (vs. Ag/Ag+) in ionic liquids (ILs) 1-butyl-3-methylimidazolium hexafluorophosphate (BmimPF6) electrolyte. In situ shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) demonstrates that the Co center of VB12 is the main ECO2RR active site. Density functional theory (DFT) calculations further indicate that the formation of COOH* is the rate-limiting step of the ECO2RR." @default.
- W4385778331 created "2023-08-13" @default.
- W4385778331 creator A5013506875 @default.
- W4385778331 creator A5013508332 @default.
- W4385778331 creator A5027185578 @default.
- W4385778331 creator A5027795613 @default.
- W4385778331 creator A5036663139 @default.
- W4385778331 creator A5037219972 @default.
- W4385778331 creator A5039821249 @default.
- W4385778331 creator A5052024256 @default.
- W4385778331 creator A5083822465 @default.
- W4385778331 date "2023-10-01" @default.
- W4385778331 modified "2023-10-17" @default.
- W4385778331 title "Vitamin B12/carbon nanotubes composites for highly efficient CO2 electroreduction with in situ shell-isolated nanoparticle-enhanced Raman spectroscopy" @default.
- W4385778331 cites W1936939651 @default.
- W4385778331 cites W1970127494 @default.
- W4385778331 cites W1989947640 @default.
- W4385778331 cites W1994204840 @default.
- W4385778331 cites W2001028460 @default.
- W4385778331 cites W2010681932 @default.
- W4385778331 cites W2014464559 @default.
- W4385778331 cites W2035009954 @default.
- W4385778331 cites W2066882640 @default.
- W4385778331 cites W2083222334 @default.
- W4385778331 cites W2107285278 @default.
- W4385778331 cites W2109772367 @default.
- W4385778331 cites W2282072364 @default.
- W4385778331 cites W2282560653 @default.
- W4385778331 cites W2313687075 @default.
- W4385778331 cites W2318757145 @default.
- W4385778331 cites W2342748100 @default.
- W4385778331 cites W2417598793 @default.
- W4385778331 cites W2438990463 @default.
- W4385778331 cites W2483928127 @default.
- W4385778331 cites W2512409144 @default.
- W4385778331 cites W2583169783 @default.
- W4385778331 cites W2586675271 @default.
- W4385778331 cites W2591654700 @default.
- W4385778331 cites W2604945037 @default.
- W4385778331 cites W2611510330 @default.
- W4385778331 cites W2725074710 @default.
- W4385778331 cites W2765824746 @default.
- W4385778331 cites W2790245974 @default.
- W4385778331 cites W2804143778 @default.
- W4385778331 cites W2884352351 @default.
- W4385778331 cites W2912962928 @default.
- W4385778331 cites W2922405197 @default.
- W4385778331 cites W2939565834 @default.
- W4385778331 cites W2944876763 @default.
- W4385778331 cites W2954068093 @default.
- W4385778331 cites W2969763154 @default.
- W4385778331 cites W2980396391 @default.
- W4385778331 cites W3002122215 @default.
- W4385778331 cites W3009092772 @default.
- W4385778331 cites W3033744654 @default.
- W4385778331 cites W3068058336 @default.
- W4385778331 cites W3082702904 @default.
- W4385778331 cites W3083346016 @default.
- W4385778331 cites W3087449489 @default.
- W4385778331 cites W3088234775 @default.
- W4385778331 cites W3089724662 @default.
- W4385778331 cites W3090488804 @default.
- W4385778331 cites W3091510016 @default.
- W4385778331 cites W3093287718 @default.
- W4385778331 cites W3094713934 @default.
- W4385778331 cites W3096663150 @default.
- W4385778331 cites W3101825211 @default.
- W4385778331 cites W3110642819 @default.
- W4385778331 cites W3115386410 @default.
- W4385778331 cites W3120028688 @default.
- W4385778331 cites W3124552913 @default.
- W4385778331 cites W3128069021 @default.
- W4385778331 cites W3130231956 @default.
- W4385778331 cites W3135936329 @default.
- W4385778331 cites W3139116006 @default.
- W4385778331 cites W3140367930 @default.
- W4385778331 cites W3166219573 @default.
- W4385778331 cites W3176983082 @default.
- W4385778331 cites W3187888768 @default.
- W4385778331 cites W3193261144 @default.
- W4385778331 cites W3194414937 @default.
- W4385778331 cites W3200911224 @default.
- W4385778331 cites W3204175106 @default.
- W4385778331 cites W3213464056 @default.
- W4385778331 cites W3216140900 @default.
- W4385778331 cites W4200318677 @default.
- W4385778331 cites W4200476731 @default.
- W4385778331 cites W4205812576 @default.
- W4385778331 cites W4220743782 @default.
- W4385778331 cites W4224270325 @default.
- W4385778331 cites W4226283615 @default.
- W4385778331 cites W4281756596 @default.
- W4385778331 cites W4282939999 @default.
- W4385778331 cites W4294877994 @default.
- W4385778331 cites W4304694503 @default.
- W4385778331 doi "https://doi.org/10.1016/j.electacta.2023.143024" @default.
- W4385778331 hasPublicationYear "2023" @default.
- W4385778331 type Work @default.