Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385778512> ?p ?o ?g. }
- W4385778512 endingPage "1181" @default.
- W4385778512 startingPage "1167" @default.
- W4385778512 abstract "ABSTRACT We present a random forest (RF) framework for predicting circumgalactic medium (CGM) physical conditions from quasar absorption line observables, trained on a sample of Voigt profile-fit synthetic absorbers from the simba cosmological simulation. Traditionally, extracting physical conditions from CGM absorber observations involves simplifying assumptions such as uniform single-phase clouds, but by using a cosmological simulation we bypass such assumptions to better capture the complex relationship between CGM observables and underlying gas conditions. We train RF models on synthetic spectra for H i and selected metal lines around galaxies across a range of star formation rates, stellar masses, and impact parameters, to predict absorber overdensities, temperatures, and metallicities. The models reproduce the true values from simba well, with normalized transverse standard deviations of 0.50–0.54 dex in overdensity, 0.32–0.54 dex in temperature, and 0.49–0.53 dex in metallicity predicted from metal lines (not H i), across all ions. Examining the feature importance, the RF indicates that the overdensity is most informed by the absorber column density, the temperature is driven by the line width, and the metallicity is most sensitive to the specific star formation rate. Alternatively examining feature importance by removing one observable at a time, the overdensity and metallicity appear to be more driven by the impact parameter. We introduce a normalizing flow approach in order to ensure the scatter in the true physical conditions is accurately spanned by the network. The trained models are available online." @default.
- W4385778512 created "2023-08-13" @default.
- W4385778512 creator A5014522902 @default.
- W4385778512 creator A5034457725 @default.
- W4385778512 creator A5056373221 @default.
- W4385778512 creator A5057180052 @default.
- W4385778512 creator A5065760471 @default.
- W4385778512 date "2023-08-09" @default.
- W4385778512 modified "2023-10-17" @default.
- W4385778512 title "Mapping circumgalactic medium observations to theory using machine learning" @default.
- W4385778512 cites W1875061881 @default.
- W4385778512 cites W1922682040 @default.
- W4385778512 cites W1979958629 @default.
- W4385778512 cites W2004958755 @default.
- W4385778512 cites W2021956736 @default.
- W4385778512 cites W2027220275 @default.
- W4385778512 cites W2054801391 @default.
- W4385778512 cites W2080386153 @default.
- W4385778512 cites W2084646370 @default.
- W4385778512 cites W2089833484 @default.
- W4385778512 cites W2091942374 @default.
- W4385778512 cites W2102683611 @default.
- W4385778512 cites W2108233972 @default.
- W4385778512 cites W2143481518 @default.
- W4385778512 cites W2215615628 @default.
- W4385778512 cites W2258614408 @default.
- W4385778512 cites W2283880039 @default.
- W4385778512 cites W2338337769 @default.
- W4385778512 cites W2410852485 @default.
- W4385778512 cites W2547995109 @default.
- W4385778512 cites W2597238720 @default.
- W4385778512 cites W2614992524 @default.
- W4385778512 cites W2756913690 @default.
- W4385778512 cites W2763351805 @default.
- W4385778512 cites W2774653944 @default.
- W4385778512 cites W2787443430 @default.
- W4385778512 cites W2792591694 @default.
- W4385778512 cites W2885525563 @default.
- W4385778512 cites W2890363482 @default.
- W4385778512 cites W2899969883 @default.
- W4385778512 cites W2911964244 @default.
- W4385778512 cites W2912395310 @default.
- W4385778512 cites W2946815352 @default.
- W4385778512 cites W2949001442 @default.
- W4385778512 cites W2949499423 @default.
- W4385778512 cites W2970339633 @default.
- W4385778512 cites W2979747258 @default.
- W4385778512 cites W2986512468 @default.
- W4385778512 cites W2988675319 @default.
- W4385778512 cites W3003787223 @default.
- W4385778512 cites W3003988923 @default.
- W4385778512 cites W3005920494 @default.
- W4385778512 cites W3009607056 @default.
- W4385778512 cites W3010563196 @default.
- W4385778512 cites W3021886534 @default.
- W4385778512 cites W3024248590 @default.
- W4385778512 cites W3026399142 @default.
- W4385778512 cites W3026745777 @default.
- W4385778512 cites W3037732127 @default.
- W4385778512 cites W3083971136 @default.
- W4385778512 cites W3094415876 @default.
- W4385778512 cites W3094615220 @default.
- W4385778512 cites W3098006831 @default.
- W4385778512 cites W3098466678 @default.
- W4385778512 cites W3098558971 @default.
- W4385778512 cites W3098703286 @default.
- W4385778512 cites W3098720994 @default.
- W4385778512 cites W3100776964 @default.
- W4385778512 cites W3101163105 @default.
- W4385778512 cites W3102600359 @default.
- W4385778512 cites W3103688182 @default.
- W4385778512 cites W3104305918 @default.
- W4385778512 cites W3106443541 @default.
- W4385778512 cites W3109091717 @default.
- W4385778512 cites W3122434597 @default.
- W4385778512 cites W3124722377 @default.
- W4385778512 cites W3126379213 @default.
- W4385778512 cites W3130063150 @default.
- W4385778512 cites W3130509199 @default.
- W4385778512 cites W3157282329 @default.
- W4385778512 cites W3166192767 @default.
- W4385778512 cites W3192393067 @default.
- W4385778512 cites W3205009298 @default.
- W4385778512 cites W3209534297 @default.
- W4385778512 cites W3211732184 @default.
- W4385778512 cites W3217584122 @default.
- W4385778512 cites W4221167758 @default.
- W4385778512 cites W4281823699 @default.
- W4385778512 cites W4282825310 @default.
- W4385778512 cites W4283704647 @default.
- W4385778512 cites W4285226910 @default.
- W4385778512 cites W4297183616 @default.
- W4385778512 cites W4313856754 @default.
- W4385778512 cites W4321117771 @default.
- W4385778512 doi "https://doi.org/10.1093/mnras/stad2266" @default.
- W4385778512 hasPublicationYear "2023" @default.
- W4385778512 type Work @default.
- W4385778512 citedByCount "0" @default.