Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385782065> ?p ?o ?g. }
- W4385782065 endingPage "102262" @default.
- W4385782065 startingPage "102262" @default.
- W4385782065 abstract "Camera traps have revolutionized wildlife resource surveys by enabling the acquisition of comprehensive ecosystem information. Camera traps usually produce massive images. Snapshot datasets captured in nature reserves proximate to human habitation often comprise a significant volume of human activity images containing humans or livestock. Manually identifying and labeling wildlife images from large-scale datasets is a labor-intensive task that necessitates a substantial number of professionals and incurs expensive personnel costs. By harnessing the capabilities of deep learning technology to automatically differentiate between wildlife and human activity images, ecologists can solely focus on manually labeling wildlife images that account for a minor fraction of the dataset. This strategic shift can significantly reduce personnel expenses and enhance work efficiency. Existing research usually treats human activity images as ordinary categories and utilizes species recognition methods to automatically identify and filter them. However, when human activity images overwhelmingly predominate the dataset, established species recognition methods are susceptible to misclassifying a substantial proportion of wildlife images as human activity images. This misclassification can potentially result in ecologists missing opportunities to discover or observe wildlife. To tackle this challenge, we proposed an ensemble learning method based on a conservative strategy and current mainstream deep learning frameworks to automatically identify wildlife and human activity images. We validated our method on a camera trap dataset from Lasha Mountain (LSM) in Yunnan, China. The experimental results demonstrated that our method automatically identified wildlife images from the dataset with accuracy, recall, and precision of 95.75%, 94.07%, and 83.89%, respectively. This led to an approximately 80% reduction in personnel costs." @default.
- W4385782065 created "2023-08-13" @default.
- W4385782065 creator A5006500554 @default.
- W4385782065 creator A5014946491 @default.
- W4385782065 creator A5018662500 @default.
- W4385782065 creator A5031315906 @default.
- W4385782065 creator A5064944412 @default.
- W4385782065 creator A5065601685 @default.
- W4385782065 creator A5067878297 @default.
- W4385782065 creator A5069007431 @default.
- W4385782065 creator A5072289376 @default.
- W4385782065 creator A5074366559 @default.
- W4385782065 creator A5081405301 @default.
- W4385782065 creator A5086326013 @default.
- W4385782065 creator A5092798256 @default.
- W4385782065 date "2023-11-01" @default.
- W4385782065 modified "2023-10-14" @default.
- W4385782065 title "A method for automatic identification and separation of wildlife images using ensemble learning" @default.
- W4385782065 cites W1980691613 @default.
- W4385782065 cites W1998752042 @default.
- W4385782065 cites W2011574062 @default.
- W4385782065 cites W2099454382 @default.
- W4385782065 cites W2162348455 @default.
- W4385782065 cites W2208340121 @default.
- W4385782065 cites W2413367505 @default.
- W4385782065 cites W2520182102 @default.
- W4385782065 cites W2521328762 @default.
- W4385782065 cites W2614424202 @default.
- W4385782065 cites W2744939250 @default.
- W4385782065 cites W2757242159 @default.
- W4385782065 cites W2767106145 @default.
- W4385782065 cites W2769210209 @default.
- W4385782065 cites W2895082331 @default.
- W4385782065 cites W2914978454 @default.
- W4385782065 cites W2919115771 @default.
- W4385782065 cites W2945989246 @default.
- W4385782065 cites W2952042923 @default.
- W4385782065 cites W2952113774 @default.
- W4385782065 cites W2964298670 @default.
- W4385782065 cites W2986914715 @default.
- W4385782065 cites W3009074285 @default.
- W4385782065 cites W3093414036 @default.
- W4385782065 cites W3121860761 @default.
- W4385782065 cites W3159201570 @default.
- W4385782065 cites W3160675823 @default.
- W4385782065 cites W3168355424 @default.
- W4385782065 cites W4212883601 @default.
- W4385782065 cites W4289525354 @default.
- W4385782065 cites W4291184085 @default.
- W4385782065 cites W4302006844 @default.
- W4385782065 cites W4308152863 @default.
- W4385782065 cites W4309279743 @default.
- W4385782065 cites W4318425209 @default.
- W4385782065 cites W4323670158 @default.
- W4385782065 cites W4379390556 @default.
- W4385782065 doi "https://doi.org/10.1016/j.ecoinf.2023.102262" @default.
- W4385782065 hasPublicationYear "2023" @default.
- W4385782065 type Work @default.
- W4385782065 citedByCount "0" @default.
- W4385782065 crossrefType "journal-article" @default.
- W4385782065 hasAuthorship W4385782065A5006500554 @default.
- W4385782065 hasAuthorship W4385782065A5014946491 @default.
- W4385782065 hasAuthorship W4385782065A5018662500 @default.
- W4385782065 hasAuthorship W4385782065A5031315906 @default.
- W4385782065 hasAuthorship W4385782065A5064944412 @default.
- W4385782065 hasAuthorship W4385782065A5065601685 @default.
- W4385782065 hasAuthorship W4385782065A5067878297 @default.
- W4385782065 hasAuthorship W4385782065A5069007431 @default.
- W4385782065 hasAuthorship W4385782065A5072289376 @default.
- W4385782065 hasAuthorship W4385782065A5074366559 @default.
- W4385782065 hasAuthorship W4385782065A5081405301 @default.
- W4385782065 hasAuthorship W4385782065A5086326013 @default.
- W4385782065 hasAuthorship W4385782065A5092798256 @default.
- W4385782065 hasConcept C116834253 @default.
- W4385782065 hasConcept C119857082 @default.
- W4385782065 hasConcept C154945302 @default.
- W4385782065 hasConcept C18903297 @default.
- W4385782065 hasConcept C29376679 @default.
- W4385782065 hasConcept C41008148 @default.
- W4385782065 hasConcept C86803240 @default.
- W4385782065 hasConcept C95623464 @default.
- W4385782065 hasConceptScore W4385782065C116834253 @default.
- W4385782065 hasConceptScore W4385782065C119857082 @default.
- W4385782065 hasConceptScore W4385782065C154945302 @default.
- W4385782065 hasConceptScore W4385782065C18903297 @default.
- W4385782065 hasConceptScore W4385782065C29376679 @default.
- W4385782065 hasConceptScore W4385782065C41008148 @default.
- W4385782065 hasConceptScore W4385782065C86803240 @default.
- W4385782065 hasConceptScore W4385782065C95623464 @default.
- W4385782065 hasFunder F4320321001 @default.
- W4385782065 hasLocation W43857820651 @default.
- W4385782065 hasOpenAccess W4385782065 @default.
- W4385782065 hasPrimaryLocation W43857820651 @default.
- W4385782065 hasRelatedWork W2961085424 @default.
- W4385782065 hasRelatedWork W3046775127 @default.
- W4385782065 hasRelatedWork W3107602296 @default.
- W4385782065 hasRelatedWork W3170094116 @default.
- W4385782065 hasRelatedWork W3209574120 @default.