Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385796188> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4385796188 endingPage "7166" @default.
- W4385796188 startingPage "7166" @default.
- W4385796188 abstract "Introduction. Spatiotemporal gait parameters, e.g., gait stride length, are measurements that are classically derived from instrumented gait analysis. Today, different solutions are available for gait assessment outside the laboratory, specifically for spatiotemporal gait parameters. Such solutions are wearable devices that comprise an inertial measurement unit (IMU) sensor and a microcontroller (MCU). However, these existing wearable devices are resource-constrained. They contain a processing unit with limited processing and memory capabilities which limit the use of machine learning to estimate spatiotemporal gait parameters directly on the device. The solution for this limitation is embedded machine learning or tiny machine learning (tinyML). This study aims to create a machine-learning model for gait stride length estimation deployable on a microcontroller. Materials and Method. Starting from a dataset consisting of 4467 gait strides from 15 healthy people, measured by IMU sensor, and using state-of-the-art machine learning frameworks and machine learning operations (MLOps) tools, a multilayer 1D convolutional float32 and int8 model for gait stride length estimation was developed. Results. The developed float32 model demonstrated a mean accuracy and precision of 0.23 ± 4.3 cm, and the int8 model demonstrated a mean accuracy and precision of 0.07 ± 4.3 cm. The memory usage for the float32 model was 284.5 kB flash and 31.9 kB RAM. The int8 model memory usage was 91.6 kB flash and 13.6 kB RAM. Both models were able to be deployed on a Cortex-M4F 64 MHz microcontroller with 1 MB flash memory and 256 kB RAM. Conclusions. This study shows that estimating gait stride length directly on a microcontroller is feasible and demonstrates the potential of embedded machine learning, or tinyML, in designing wearable sensor devices for gait analysis." @default.
- W4385796188 created "2023-08-14" @default.
- W4385796188 creator A5005586417 @default.
- W4385796188 creator A5035616620 @default.
- W4385796188 creator A5046485263 @default.
- W4385796188 creator A5054592626 @default.
- W4385796188 creator A5067653132 @default.
- W4385796188 creator A5080392562 @default.
- W4385796188 date "2023-08-14" @default.
- W4385796188 modified "2023-09-27" @default.
- W4385796188 title "Gait Stride Length Estimation Using Embedded Machine Learning" @default.
- W4385796188 cites W2015795623 @default.
- W4385796188 cites W2519457600 @default.
- W4385796188 cites W2559852960 @default.
- W4385796188 cites W2620639087 @default.
- W4385796188 cites W2902156989 @default.
- W4385796188 cites W3014614643 @default.
- W4385796188 cites W3026905460 @default.
- W4385796188 cites W3083914698 @default.
- W4385796188 cites W3101801952 @default.
- W4385796188 cites W3120042262 @default.
- W4385796188 cites W3193732201 @default.
- W4385796188 cites W4295934548 @default.
- W4385796188 cites W4385791713 @default.
- W4385796188 doi "https://doi.org/10.3390/s23167166" @default.
- W4385796188 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37631706" @default.
- W4385796188 hasPublicationYear "2023" @default.
- W4385796188 type Work @default.
- W4385796188 citedByCount "0" @default.
- W4385796188 crossrefType "journal-article" @default.
- W4385796188 hasAuthorship W4385796188A5005586417 @default.
- W4385796188 hasAuthorship W4385796188A5035616620 @default.
- W4385796188 hasAuthorship W4385796188A5046485263 @default.
- W4385796188 hasAuthorship W4385796188A5054592626 @default.
- W4385796188 hasAuthorship W4385796188A5067653132 @default.
- W4385796188 hasAuthorship W4385796188A5080392562 @default.
- W4385796188 hasBestOaLocation W43857961881 @default.
- W4385796188 hasConcept C119857082 @default.
- W4385796188 hasConcept C121332964 @default.
- W4385796188 hasConcept C149635348 @default.
- W4385796188 hasConcept C150594956 @default.
- W4385796188 hasConcept C151233233 @default.
- W4385796188 hasConcept C151800584 @default.
- W4385796188 hasConcept C154945302 @default.
- W4385796188 hasConcept C173018170 @default.
- W4385796188 hasConcept C173906292 @default.
- W4385796188 hasConcept C18007350 @default.
- W4385796188 hasConcept C31972630 @default.
- W4385796188 hasConcept C38652104 @default.
- W4385796188 hasConcept C41008148 @default.
- W4385796188 hasConcept C44154836 @default.
- W4385796188 hasConcept C62520636 @default.
- W4385796188 hasConcept C71924100 @default.
- W4385796188 hasConcept C79061980 @default.
- W4385796188 hasConcept C99508421 @default.
- W4385796188 hasConceptScore W4385796188C119857082 @default.
- W4385796188 hasConceptScore W4385796188C121332964 @default.
- W4385796188 hasConceptScore W4385796188C149635348 @default.
- W4385796188 hasConceptScore W4385796188C150594956 @default.
- W4385796188 hasConceptScore W4385796188C151233233 @default.
- W4385796188 hasConceptScore W4385796188C151800584 @default.
- W4385796188 hasConceptScore W4385796188C154945302 @default.
- W4385796188 hasConceptScore W4385796188C173018170 @default.
- W4385796188 hasConceptScore W4385796188C173906292 @default.
- W4385796188 hasConceptScore W4385796188C18007350 @default.
- W4385796188 hasConceptScore W4385796188C31972630 @default.
- W4385796188 hasConceptScore W4385796188C38652104 @default.
- W4385796188 hasConceptScore W4385796188C41008148 @default.
- W4385796188 hasConceptScore W4385796188C44154836 @default.
- W4385796188 hasConceptScore W4385796188C62520636 @default.
- W4385796188 hasConceptScore W4385796188C71924100 @default.
- W4385796188 hasConceptScore W4385796188C79061980 @default.
- W4385796188 hasConceptScore W4385796188C99508421 @default.
- W4385796188 hasIssue "16" @default.
- W4385796188 hasLocation W43857961881 @default.
- W4385796188 hasLocation W43857961882 @default.
- W4385796188 hasOpenAccess W4385796188 @default.
- W4385796188 hasPrimaryLocation W43857961881 @default.
- W4385796188 hasRelatedWork W2095161428 @default.
- W4385796188 hasRelatedWork W2502505134 @default.
- W4385796188 hasRelatedWork W3009247559 @default.
- W4385796188 hasRelatedWork W3036113349 @default.
- W4385796188 hasRelatedWork W3082879976 @default.
- W4385796188 hasRelatedWork W3207189946 @default.
- W4385796188 hasRelatedWork W4229934130 @default.
- W4385796188 hasRelatedWork W4237467591 @default.
- W4385796188 hasRelatedWork W4285408179 @default.
- W4385796188 hasRelatedWork W4361281031 @default.
- W4385796188 hasVolume "23" @default.
- W4385796188 isParatext "false" @default.
- W4385796188 isRetracted "false" @default.
- W4385796188 workType "article" @default.