Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385798405> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W4385798405 abstract "Objective The purpose of this study is to evaluate the efficacy of deep learning reconstruction (DLR) on low-tube-voltage computed tomographic angiography (CTA) for transcatheter aortic valve implantation (TAVI). Methods We enrolled 30 patients who underwent TAVI-CT on a 320-row CT scanner. Electrocardiogram-gated coronary CTA (CCTA) was performed at 100 kV, followed by nongated aortoiliac CTA at 80 kV using a single bolus of contrast material. We used hybrid-iterative reconstruction (HIR), model-based IR (MBIR), and DLR to reconstruct these images. The contrast-to-noise ratios (CNRs) were calculated. Five-point scales were used for the overall image quality analysis. The diameter of the aortic annulus was measured in each reconstructed image, and we compared the interobserver and intraobserver agreements. Results In the CCTA, the CNR and image quality score for DLR were significantly higher than those for HIR and MBIR ( P < 0.01). In the aortoiliac CTA, the CNR for DLR was significantly higher than that for HIR ( P < 0.01) and significantly lower than that for MBIR ( P ≤ 0.02). The image quality score for DLR was significantly higher than that for HIR ( P < 0.01). No significant differences were observed between the image quality scores for DLR and MBIR. The measured aortic annulus diameter had high interobserver and intraobserver agreement regardless of the reconstruction method (all intraclass correlation coefficients, >0.89). Conclusions In low tube voltage TAVI-CT, DLR provides higher image quality than HIR, and DLR provides higher image quality than MBIR in CCTA and is visually comparable to MBIR in aortoiliac CTA." @default.
- W4385798405 created "2023-08-15" @default.
- W4385798405 creator A5000034726 @default.
- W4385798405 creator A5014510397 @default.
- W4385798405 creator A5033412482 @default.
- W4385798405 creator A5039571153 @default.
- W4385798405 creator A5041558883 @default.
- W4385798405 creator A5061434465 @default.
- W4385798405 creator A5063116362 @default.
- W4385798405 creator A5078833312 @default.
- W4385798405 creator A5079456421 @default.
- W4385798405 creator A5086699858 @default.
- W4385798405 date "2023-08-11" @default.
- W4385798405 modified "2023-10-02" @default.
- W4385798405 title "The Feasibility of Deep Learning–Based Reconstruction for Low-Tube-Voltage CT Angiography for Transcatheter Aortic Valve Implantation" @default.
- W4385798405 cites W118223332 @default.
- W4385798405 cites W1851970902 @default.
- W4385798405 cites W1987271654 @default.
- W4385798405 cites W1999302269 @default.
- W4385798405 cites W2023026281 @default.
- W4385798405 cites W2042463250 @default.
- W4385798405 cites W2053154970 @default.
- W4385798405 cites W2068943123 @default.
- W4385798405 cites W2073546968 @default.
- W4385798405 cites W2086028901 @default.
- W4385798405 cites W2126421023 @default.
- W4385798405 cites W2135282818 @default.
- W4385798405 cites W2138606370 @default.
- W4385798405 cites W2141834520 @default.
- W4385798405 cites W2148518552 @default.
- W4385798405 cites W2513298502 @default.
- W4385798405 cites W2554313801 @default.
- W4385798405 cites W2781967960 @default.
- W4385798405 cites W2887941224 @default.
- W4385798405 cites W2890927244 @default.
- W4385798405 cites W2936378778 @default.
- W4385798405 cites W2937456081 @default.
- W4385798405 cites W2979926788 @default.
- W4385798405 cites W2994431743 @default.
- W4385798405 cites W2998949850 @default.
- W4385798405 cites W64335975 @default.
- W4385798405 doi "https://doi.org/10.1097/rct.0000000000001525" @default.
- W4385798405 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37574664" @default.
- W4385798405 hasPublicationYear "2023" @default.
- W4385798405 type Work @default.
- W4385798405 citedByCount "0" @default.
- W4385798405 crossrefType "journal-article" @default.
- W4385798405 hasAuthorship W4385798405A5000034726 @default.
- W4385798405 hasAuthorship W4385798405A5014510397 @default.
- W4385798405 hasAuthorship W4385798405A5033412482 @default.
- W4385798405 hasAuthorship W4385798405A5039571153 @default.
- W4385798405 hasAuthorship W4385798405A5041558883 @default.
- W4385798405 hasAuthorship W4385798405A5061434465 @default.
- W4385798405 hasAuthorship W4385798405A5063116362 @default.
- W4385798405 hasAuthorship W4385798405A5078833312 @default.
- W4385798405 hasAuthorship W4385798405A5079456421 @default.
- W4385798405 hasAuthorship W4385798405A5086699858 @default.
- W4385798405 hasConcept C115961682 @default.
- W4385798405 hasConcept C126838900 @default.
- W4385798405 hasConcept C141379421 @default.
- W4385798405 hasConcept C154945302 @default.
- W4385798405 hasConcept C176752191 @default.
- W4385798405 hasConcept C2776570981 @default.
- W4385798405 hasConcept C2780007028 @default.
- W4385798405 hasConcept C2780643987 @default.
- W4385798405 hasConcept C2781347138 @default.
- W4385798405 hasConcept C2989005 @default.
- W4385798405 hasConcept C41008148 @default.
- W4385798405 hasConcept C55020928 @default.
- W4385798405 hasConcept C71924100 @default.
- W4385798405 hasConceptScore W4385798405C115961682 @default.
- W4385798405 hasConceptScore W4385798405C126838900 @default.
- W4385798405 hasConceptScore W4385798405C141379421 @default.
- W4385798405 hasConceptScore W4385798405C154945302 @default.
- W4385798405 hasConceptScore W4385798405C176752191 @default.
- W4385798405 hasConceptScore W4385798405C2776570981 @default.
- W4385798405 hasConceptScore W4385798405C2780007028 @default.
- W4385798405 hasConceptScore W4385798405C2780643987 @default.
- W4385798405 hasConceptScore W4385798405C2781347138 @default.
- W4385798405 hasConceptScore W4385798405C2989005 @default.
- W4385798405 hasConceptScore W4385798405C41008148 @default.
- W4385798405 hasConceptScore W4385798405C55020928 @default.
- W4385798405 hasConceptScore W4385798405C71924100 @default.
- W4385798405 hasLocation W43857984051 @default.
- W4385798405 hasLocation W43857984052 @default.
- W4385798405 hasOpenAccess W4385798405 @default.
- W4385798405 hasPrimaryLocation W43857984051 @default.
- W4385798405 hasRelatedWork W1591473065 @default.
- W4385798405 hasRelatedWork W1627143209 @default.
- W4385798405 hasRelatedWork W2011797925 @default.
- W4385798405 hasRelatedWork W2012021077 @default.
- W4385798405 hasRelatedWork W2105162923 @default.
- W4385798405 hasRelatedWork W2135564668 @default.
- W4385798405 hasRelatedWork W2215132873 @default.
- W4385798405 hasRelatedWork W2358339920 @default.
- W4385798405 hasRelatedWork W2784323348 @default.
- W4385798405 hasRelatedWork W2785378345 @default.
- W4385798405 isParatext "false" @default.
- W4385798405 isRetracted "false" @default.
- W4385798405 workType "article" @default.