Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385799572> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W4385799572 abstract "Satellite-based data classification performance remains a challenge for research community in the field of land use/land cover mapping. Here we investigated supervised per-pixel classifications performance under different scenarios, based on single and seasonal multispectral data combi-nations of different sensors (Landsat-8 OLI and Sentinel-2 MSI). In case of Landsat, seasonal spectral indices (EVI and NDMI) were included. A typical Mediterranean watershed with a complex landscape comprised of various forest and wetland ecosystems, crops, artificial surfaces, and lake water was selected to test our approach. All available geospatial data from national databases (Forest Map, LPIS, Natura2000 habitats, cadastral parcels, etc.) are used as ancillary data for clas-sification training and validation. We examined and compared the performance of ML, RF, KNN and SVM classifiers under different scenarios for land use/land cover mapping, according to Copernicus Land Cover (CLC2018) nomenclature. In total, eight land use/land cover classes were identified in Landsat-8 OLI and nine in Sentinel-2a MSI for an acceptable overall accuracy over 85%. A comparison of the overall classification accuracies shows that Sentinel-2a overall accuracy was slightly higher than Landsat-8 (96.68% vs. 93.02%). Respectively, the best-performed algorithm was ML in Sentinel-2 while in Landsat-8 was KNN. However, machine-learning algorithms have similar results regardless the type of sensor. We concluded that best classification performances achieved using seasonal multispectral data. Future research should be oriented towards inte-grating time-series multispectral data of different sensors and geospatial ancillary data for land use/land cover mapping." @default.
- W4385799572 created "2023-08-15" @default.
- W4385799572 creator A5057308975 @default.
- W4385799572 creator A5062301336 @default.
- W4385799572 date "2023-08-14" @default.
- W4385799572 modified "2023-09-27" @default.
- W4385799572 title "Comparison of pixel-based classification algorithms using Landsat-8 OLI and Sentinel-2 MSI for land use/land cover mapping in a heterogeneous landscape" @default.
- W4385799572 doi "https://doi.org/10.20944/preprints202307.1043.v2" @default.
- W4385799572 hasPublicationYear "2023" @default.
- W4385799572 type Work @default.
- W4385799572 citedByCount "0" @default.
- W4385799572 crossrefType "posted-content" @default.
- W4385799572 hasAuthorship W4385799572A5057308975 @default.
- W4385799572 hasAuthorship W4385799572A5062301336 @default.
- W4385799572 hasBestOaLocation W43857995721 @default.
- W4385799572 hasConcept C127413603 @default.
- W4385799572 hasConcept C146978453 @default.
- W4385799572 hasConcept C173163844 @default.
- W4385799572 hasConcept C18903297 @default.
- W4385799572 hasConcept C19269812 @default.
- W4385799572 hasConcept C205649164 @default.
- W4385799572 hasConcept C2778102629 @default.
- W4385799572 hasConcept C2780408538 @default.
- W4385799572 hasConcept C2780648208 @default.
- W4385799572 hasConcept C39432304 @default.
- W4385799572 hasConcept C41008148 @default.
- W4385799572 hasConcept C4792198 @default.
- W4385799572 hasConcept C58640448 @default.
- W4385799572 hasConcept C62649853 @default.
- W4385799572 hasConcept C67715294 @default.
- W4385799572 hasConcept C86803240 @default.
- W4385799572 hasConcept C9770341 @default.
- W4385799572 hasConceptScore W4385799572C127413603 @default.
- W4385799572 hasConceptScore W4385799572C146978453 @default.
- W4385799572 hasConceptScore W4385799572C173163844 @default.
- W4385799572 hasConceptScore W4385799572C18903297 @default.
- W4385799572 hasConceptScore W4385799572C19269812 @default.
- W4385799572 hasConceptScore W4385799572C205649164 @default.
- W4385799572 hasConceptScore W4385799572C2778102629 @default.
- W4385799572 hasConceptScore W4385799572C2780408538 @default.
- W4385799572 hasConceptScore W4385799572C2780648208 @default.
- W4385799572 hasConceptScore W4385799572C39432304 @default.
- W4385799572 hasConceptScore W4385799572C41008148 @default.
- W4385799572 hasConceptScore W4385799572C4792198 @default.
- W4385799572 hasConceptScore W4385799572C58640448 @default.
- W4385799572 hasConceptScore W4385799572C62649853 @default.
- W4385799572 hasConceptScore W4385799572C67715294 @default.
- W4385799572 hasConceptScore W4385799572C86803240 @default.
- W4385799572 hasConceptScore W4385799572C9770341 @default.
- W4385799572 hasLocation W43857995721 @default.
- W4385799572 hasOpenAccess W4385799572 @default.
- W4385799572 hasPrimaryLocation W43857995721 @default.
- W4385799572 hasRelatedWork W2036058707 @default.
- W4385799572 hasRelatedWork W2037952344 @default.
- W4385799572 hasRelatedWork W2057962381 @default.
- W4385799572 hasRelatedWork W2124503034 @default.
- W4385799572 hasRelatedWork W2276534006 @default.
- W4385799572 hasRelatedWork W2574572900 @default.
- W4385799572 hasRelatedWork W2751042086 @default.
- W4385799572 hasRelatedWork W2899084033 @default.
- W4385799572 hasRelatedWork W28995522 @default.
- W4385799572 hasRelatedWork W1649029163 @default.
- W4385799572 isParatext "false" @default.
- W4385799572 isRetracted "false" @default.
- W4385799572 workType "article" @default.