Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385800787> ?p ?o ?g. }
- W4385800787 abstract "Cognitive scientists believe adaptable intelligent agents like humans perform reasoning through learned causal mental simulations of agents and environments. The problem of learning such simulations is called predictive world modeling. Recently, reinforcement learning (RL) agents leveraging world models have achieved SOTA performance in game environments. However, understanding how to apply the world modeling approach in complex real-world environments relevant to mobile robots remains an open question. In this paper, we present a framework for learning a probabilistic predictive world model for real-world road environments. We implement the model using a hierarchical VAE (HVAE) capable of predicting a diverse set of fully observed plausible worlds from accumulated sensor observations. While prior HVAE methods require complete states as ground truth for learning, we present a novel sequential training method to allow HVAEs to learn to predict complete states from partially observed states only. We experimentally demonstrate accurate spatial structure prediction of deterministic regions achieving 96.21 IoU, and close the gap to perfect prediction by 62 % for stochastic regions using the best prediction. By extending HVAEs to cases where complete ground truth states do not exist, we facilitate continual learning of spatial prediction as a step towards realizing explainable and comprehensive predictive world models for real-world mobile robotics applications. Code is available at https://github.com/robin-karlsson0/predictive-world-models." @default.
- W4385800787 created "2023-08-15" @default.
- W4385800787 creator A5017608098 @default.
- W4385800787 creator A5022811365 @default.
- W4385800787 creator A5042118446 @default.
- W4385800787 creator A5055647978 @default.
- W4385800787 creator A5084509555 @default.
- W4385800787 date "2023-05-01" @default.
- W4385800787 modified "2023-10-16" @default.
- W4385800787 title "Predictive World Models from Real-World Partial Observations" @default.
- W4385800787 cites W1990012555 @default.
- W4385800787 cites W1991084701 @default.
- W4385800787 cites W1991742456 @default.
- W4385800787 cites W2034806191 @default.
- W4385800787 cites W2049981393 @default.
- W4385800787 cites W2115579991 @default.
- W4385800787 cites W2134236847 @default.
- W4385800787 cites W2143891888 @default.
- W4385800787 cites W2145339207 @default.
- W4385800787 cites W2147800946 @default.
- W4385800787 cites W2150066425 @default.
- W4385800787 cites W2340897893 @default.
- W4385800787 cites W2343568200 @default.
- W4385800787 cites W2345032733 @default.
- W4385800787 cites W2476752140 @default.
- W4385800787 cites W2528398598 @default.
- W4385800787 cites W2593174349 @default.
- W4385800787 cites W2604231069 @default.
- W4385800787 cites W2738588019 @default.
- W4385800787 cites W2761873684 @default.
- W4385800787 cites W2781228439 @default.
- W4385800787 cites W2890003176 @default.
- W4385800787 cites W2905068295 @default.
- W4385800787 cites W2917286209 @default.
- W4385800787 cites W2954174912 @default.
- W4385800787 cites W2963255313 @default.
- W4385800787 cites W2963305465 @default.
- W4385800787 cites W2963420272 @default.
- W4385800787 cites W2963619659 @default.
- W4385800787 cites W2963917315 @default.
- W4385800787 cites W2964294967 @default.
- W4385800787 cites W2966271811 @default.
- W4385800787 cites W2982763192 @default.
- W4385800787 cites W2985775862 @default.
- W4385800787 cites W2996514457 @default.
- W4385800787 cites W3011955763 @default.
- W4385800787 cites W3034482833 @default.
- W4385800787 cites W3034514115 @default.
- W4385800787 cites W3034604951 @default.
- W4385800787 cites W3034669477 @default.
- W4385800787 cites W3035564946 @default.
- W4385800787 cites W3035574168 @default.
- W4385800787 cites W3035687950 @default.
- W4385800787 cites W3035749845 @default.
- W4385800787 cites W3043547428 @default.
- W4385800787 cites W3043650969 @default.
- W4385800787 cites W3096831136 @default.
- W4385800787 cites W3103780890 @default.
- W4385800787 cites W3117234758 @default.
- W4385800787 cites W3120363534 @default.
- W4385800787 cites W3163853881 @default.
- W4385800787 cites W3166762869 @default.
- W4385800787 cites W3172084025 @default.
- W4385800787 cites W3172477795 @default.
- W4385800787 cites W3172580877 @default.
- W4385800787 cites W3173668541 @default.
- W4385800787 cites W3174688521 @default.
- W4385800787 cites W3177583232 @default.
- W4385800787 cites W3179351458 @default.
- W4385800787 cites W3183092879 @default.
- W4385800787 cites W3198460218 @default.
- W4385800787 cites W3209727914 @default.
- W4385800787 cites W3211640812 @default.
- W4385800787 cites W4200396728 @default.
- W4385800787 cites W4210281455 @default.
- W4385800787 cites W4214530037 @default.
- W4385800787 cites W4232976691 @default.
- W4385800787 cites W4241543438 @default.
- W4385800787 cites W4242264894 @default.
- W4385800787 cites W4251009746 @default.
- W4385800787 cites W4295215132 @default.
- W4385800787 cites W4312480149 @default.
- W4385800787 cites W4313017495 @default.
- W4385800787 cites W4315778466 @default.
- W4385800787 doi "https://doi.org/10.1109/most57249.2023.00024" @default.
- W4385800787 hasPublicationYear "2023" @default.
- W4385800787 type Work @default.
- W4385800787 citedByCount "0" @default.
- W4385800787 crossrefType "proceedings-article" @default.
- W4385800787 hasAuthorship W4385800787A5017608098 @default.
- W4385800787 hasAuthorship W4385800787A5022811365 @default.
- W4385800787 hasAuthorship W4385800787A5042118446 @default.
- W4385800787 hasAuthorship W4385800787A5055647978 @default.
- W4385800787 hasAuthorship W4385800787A5084509555 @default.
- W4385800787 hasBestOaLocation W43858007872 @default.
- W4385800787 hasConcept C119857082 @default.
- W4385800787 hasConcept C146849305 @default.
- W4385800787 hasConcept C154945302 @default.
- W4385800787 hasConcept C177264268 @default.
- W4385800787 hasConcept C199360897 @default.