Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385804930> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W4385804930 abstract "Accurate channel estimation at the receiver is critical for subsequent downlink data transmission in orthogonal frequency division multiplexing (OFDM) systems. However, tracking the rich variety of propagation environments is challenging. At the same time, the variation of the channel in time and frequency also makes channel estimation difficult. In this paper, we exploit machine learning techniques as an attractive option to learn improved solutions for channel estimation problem. Instead of training a single large neural network for all channel conditions, we design dedicated sub-networks for channels with varying delay and Doppler shift conditions. Then we propose a hard selection method to estimate the channel with the optimal sub-network which is determined by a channel condition classifier. We further propose a soft selection method to combine multiple sub-networks for better estimation performance. Simulation results show that compared with the conventional least squares (LS) channel estimation method, the proposed networks achieve approximately 7 dB normalized mean square error (NMSE) gain at SNR = 10 dB." @default.
- W4385804930 created "2023-08-15" @default.
- W4385804930 creator A5061430082 @default.
- W4385804930 creator A5080178918 @default.
- W4385804930 date "2023-06-01" @default.
- W4385804930 modified "2023-09-26" @default.
- W4385804930 title "Robust Machine Learning for Channel Estimation with Varying Delay and Doppler Shift Conditions" @default.
- W4385804930 cites W2009171710 @default.
- W4385804930 cites W2103699908 @default.
- W4385804930 cites W2114004090 @default.
- W4385804930 cites W2194775991 @default.
- W4385804930 cites W2519862254 @default.
- W4385804930 cites W2542940886 @default.
- W4385804930 cites W2599033778 @default.
- W4385804930 cites W2807731816 @default.
- W4385804930 cites W2898694298 @default.
- W4385804930 cites W2936900179 @default.
- W4385804930 cites W2963190722 @default.
- W4385804930 cites W2963836746 @default.
- W4385804930 cites W2996956941 @default.
- W4385804930 cites W3162637257 @default.
- W4385804930 cites W3168988594 @default.
- W4385804930 doi "https://doi.org/10.1109/vtc2023-spring57618.2023.10199352" @default.
- W4385804930 hasPublicationYear "2023" @default.
- W4385804930 type Work @default.
- W4385804930 citedByCount "0" @default.
- W4385804930 crossrefType "proceedings-article" @default.
- W4385804930 hasAuthorship W4385804930A5061430082 @default.
- W4385804930 hasAuthorship W4385804930A5080178918 @default.
- W4385804930 hasConcept C11413529 @default.
- W4385804930 hasConcept C121332964 @default.
- W4385804930 hasConcept C127162648 @default.
- W4385804930 hasConcept C1276947 @default.
- W4385804930 hasConcept C138660444 @default.
- W4385804930 hasConcept C142757262 @default.
- W4385804930 hasConcept C154945302 @default.
- W4385804930 hasConcept C40409654 @default.
- W4385804930 hasConcept C41008148 @default.
- W4385804930 hasConcept C50644808 @default.
- W4385804930 hasConcept C76155785 @default.
- W4385804930 hasConceptScore W4385804930C11413529 @default.
- W4385804930 hasConceptScore W4385804930C121332964 @default.
- W4385804930 hasConceptScore W4385804930C127162648 @default.
- W4385804930 hasConceptScore W4385804930C1276947 @default.
- W4385804930 hasConceptScore W4385804930C138660444 @default.
- W4385804930 hasConceptScore W4385804930C142757262 @default.
- W4385804930 hasConceptScore W4385804930C154945302 @default.
- W4385804930 hasConceptScore W4385804930C40409654 @default.
- W4385804930 hasConceptScore W4385804930C41008148 @default.
- W4385804930 hasConceptScore W4385804930C50644808 @default.
- W4385804930 hasConceptScore W4385804930C76155785 @default.
- W4385804930 hasLocation W43858049301 @default.
- W4385804930 hasOpenAccess W4385804930 @default.
- W4385804930 hasPrimaryLocation W43858049301 @default.
- W4385804930 hasRelatedWork W1839059238 @default.
- W4385804930 hasRelatedWork W2012613664 @default.
- W4385804930 hasRelatedWork W2115957869 @default.
- W4385804930 hasRelatedWork W2385492535 @default.
- W4385804930 hasRelatedWork W2548053691 @default.
- W4385804930 hasRelatedWork W2548180463 @default.
- W4385804930 hasRelatedWork W2887853412 @default.
- W4385804930 hasRelatedWork W3045644480 @default.
- W4385804930 hasRelatedWork W3146237218 @default.
- W4385804930 hasRelatedWork W4385778946 @default.
- W4385804930 isParatext "false" @default.
- W4385804930 isRetracted "false" @default.
- W4385804930 workType "article" @default.