Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385804956> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W4385804956 abstract "We present three multi-scale similarity learning architectures, or DeepSim networks. These models learn pixel-level matching with a contrastive loss and are agnostic to the geometry of the considered scene. We establish a middle ground between hybrid and end-to-end approaches by learning to densely allocate all corresponding pixels of an epipolar pair at once. Our features are learnt on large image tiles to be expressive and capture the scene’s wider context. We also demonstrate that curated sample mining can enhance the overall robustness of the predicted similarities and improve the performance on radiometri-cally homogeneous areas. We run experiments on aerial and satellite datasets. Our DeepSim-Nets outperform the baseline hybrid approaches and generalize better to unseen scene geometries than end-to-end methods. Our flexible architecture can be readily adopted in standard multi-resolution image matching pipelines. The code is available at https://github.com/DaliCHEBBI/DeepSimNets." @default.
- W4385804956 created "2023-08-15" @default.
- W4385804956 creator A5039128487 @default.
- W4385804956 creator A5053391421 @default.
- W4385804956 creator A5062272796 @default.
- W4385804956 creator A5084250355 @default.
- W4385804956 date "2023-06-01" @default.
- W4385804956 modified "2023-09-26" @default.
- W4385804956 title "DeepSim-Nets: Deep Similarity Networks for Stereo Image Matching" @default.
- W4385804956 cites W1649464328 @default.
- W4385804956 cites W1955055330 @default.
- W4385804956 cites W2117248802 @default.
- W4385804956 cites W2194775991 @default.
- W4385804956 cites W2214868166 @default.
- W4385804956 cites W2599802623 @default.
- W4385804956 cites W2604231069 @default.
- W4385804956 cites W2952813711 @default.
- W4385804956 cites W2962880841 @default.
- W4385804956 cites W2963537624 @default.
- W4385804956 cites W2963619659 @default.
- W4385804956 cites W2982809261 @default.
- W4385804956 cites W3094340127 @default.
- W4385804956 cites W3094897602 @default.
- W4385804956 cites W3099206234 @default.
- W4385804956 cites W3174850178 @default.
- W4385804956 cites W4307104049 @default.
- W4385804956 doi "https://doi.org/10.1109/cvprw59228.2023.00203" @default.
- W4385804956 hasPublicationYear "2023" @default.
- W4385804956 type Work @default.
- W4385804956 citedByCount "0" @default.
- W4385804956 crossrefType "proceedings-article" @default.
- W4385804956 hasAuthorship W4385804956A5039128487 @default.
- W4385804956 hasAuthorship W4385804956A5053391421 @default.
- W4385804956 hasAuthorship W4385804956A5062272796 @default.
- W4385804956 hasAuthorship W4385804956A5084250355 @default.
- W4385804956 hasBestOaLocation W43858049562 @default.
- W4385804956 hasConcept C103278499 @default.
- W4385804956 hasConcept C104317684 @default.
- W4385804956 hasConcept C105795698 @default.
- W4385804956 hasConcept C108583219 @default.
- W4385804956 hasConcept C115961682 @default.
- W4385804956 hasConcept C151730666 @default.
- W4385804956 hasConcept C153180895 @default.
- W4385804956 hasConcept C154945302 @default.
- W4385804956 hasConcept C160633673 @default.
- W4385804956 hasConcept C165064840 @default.
- W4385804956 hasConcept C177264268 @default.
- W4385804956 hasConcept C185592680 @default.
- W4385804956 hasConcept C199360897 @default.
- W4385804956 hasConcept C23379248 @default.
- W4385804956 hasConcept C2776760102 @default.
- W4385804956 hasConcept C2779343474 @default.
- W4385804956 hasConcept C31972630 @default.
- W4385804956 hasConcept C33923547 @default.
- W4385804956 hasConcept C41008148 @default.
- W4385804956 hasConcept C55493867 @default.
- W4385804956 hasConcept C63479239 @default.
- W4385804956 hasConcept C86803240 @default.
- W4385804956 hasConceptScore W4385804956C103278499 @default.
- W4385804956 hasConceptScore W4385804956C104317684 @default.
- W4385804956 hasConceptScore W4385804956C105795698 @default.
- W4385804956 hasConceptScore W4385804956C108583219 @default.
- W4385804956 hasConceptScore W4385804956C115961682 @default.
- W4385804956 hasConceptScore W4385804956C151730666 @default.
- W4385804956 hasConceptScore W4385804956C153180895 @default.
- W4385804956 hasConceptScore W4385804956C154945302 @default.
- W4385804956 hasConceptScore W4385804956C160633673 @default.
- W4385804956 hasConceptScore W4385804956C165064840 @default.
- W4385804956 hasConceptScore W4385804956C177264268 @default.
- W4385804956 hasConceptScore W4385804956C185592680 @default.
- W4385804956 hasConceptScore W4385804956C199360897 @default.
- W4385804956 hasConceptScore W4385804956C23379248 @default.
- W4385804956 hasConceptScore W4385804956C2776760102 @default.
- W4385804956 hasConceptScore W4385804956C2779343474 @default.
- W4385804956 hasConceptScore W4385804956C31972630 @default.
- W4385804956 hasConceptScore W4385804956C33923547 @default.
- W4385804956 hasConceptScore W4385804956C41008148 @default.
- W4385804956 hasConceptScore W4385804956C55493867 @default.
- W4385804956 hasConceptScore W4385804956C63479239 @default.
- W4385804956 hasConceptScore W4385804956C86803240 @default.
- W4385804956 hasLocation W43858049561 @default.
- W4385804956 hasLocation W43858049562 @default.
- W4385804956 hasOpenAccess W4385804956 @default.
- W4385804956 hasPrimaryLocation W43858049561 @default.
- W4385804956 hasRelatedWork W1549664882 @default.
- W4385804956 hasRelatedWork W1629692288 @default.
- W4385804956 hasRelatedWork W1984315854 @default.
- W4385804956 hasRelatedWork W2048518944 @default.
- W4385804956 hasRelatedWork W2094002035 @default.
- W4385804956 hasRelatedWork W2101703235 @default.
- W4385804956 hasRelatedWork W2168742579 @default.
- W4385804956 hasRelatedWork W2360564767 @default.
- W4385804956 hasRelatedWork W2737258383 @default.
- W4385804956 hasRelatedWork W3152085117 @default.
- W4385804956 isParatext "false" @default.
- W4385804956 isRetracted "false" @default.
- W4385804956 workType "article" @default.