Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385804971> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W4385804971 abstract "Facial micro-expressions (MEs) refer to subtle, transient, and involuntary muscle movements expressing a person’s true feelings. This paper presents a novel two-stream relational edge-node graph attention network-based approach to classify MEs in a video by selecting the high-intensity frames and edge-node features that can provide valuable information about the relationship between nodes and structural information in a graph structure. The paper examines the impact of different edge-node features and their relationships on the graphs. The first step involves extracting high-intensity-emotion frames from the video using optical flow. Second, node feature embeddings are calculated using the node location coordinate features and the patch size information of the optical flow across each node location. Additionally, we obtain the global and local structural similarity score using the jaccard’s similarity score and radial basis function as the edge features. Third, a self-attention graph pooling layer helps to remove the nodes with lower attention scores based on the top-k selection. As the final step, the network employs a two-stream edge-node graph attention network that focuses on finding correlations among the edge and node features, such as landmark coordinates, optical flow, and global and local edge features. A three-frame graph structure is designed to obtain spatiotemporal information. For 3 and 5 expression classes, the results are compared for SMIC and CASME II databases." @default.
- W4385804971 created "2023-08-15" @default.
- W4385804971 creator A5014324882 @default.
- W4385804971 creator A5015674113 @default.
- W4385804971 date "2023-06-01" @default.
- W4385804971 modified "2023-09-26" @default.
- W4385804971 title "Relational Edge-Node Graph Attention Network for Classification of Micro-Expressions" @default.
- W4385804971 cites W1217048403 @default.
- W4385804971 cites W1998391547 @default.
- W4385804971 cites W2006426145 @default.
- W4385804971 cites W2044106642 @default.
- W4385804971 cites W2056591378 @default.
- W4385804971 cites W2072038603 @default.
- W4385804971 cites W2082285544 @default.
- W4385804971 cites W2129945371 @default.
- W4385804971 cites W2139916508 @default.
- W4385804971 cites W2154823510 @default.
- W4385804971 cites W2478411578 @default.
- W4385804971 cites W2527254703 @default.
- W4385804971 cites W2551042279 @default.
- W4385804971 cites W2623355927 @default.
- W4385804971 cites W2787621021 @default.
- W4385804971 cites W2795270851 @default.
- W4385804971 cites W2891182955 @default.
- W4385804971 cites W2958471948 @default.
- W4385804971 cites W2962162344 @default.
- W4385804971 cites W2962802777 @default.
- W4385804971 cites W2963230974 @default.
- W4385804971 cites W2963966377 @default.
- W4385804971 cites W2970981431 @default.
- W4385804971 cites W2996310233 @default.
- W4385804971 cites W3080663431 @default.
- W4385804971 cites W3080756971 @default.
- W4385804971 cites W3092753574 @default.
- W4385804971 cites W3092956019 @default.
- W4385804971 cites W3096596051 @default.
- W4385804971 cites W3100951556 @default.
- W4385804971 cites W3103539074 @default.
- W4385804971 cites W3119183551 @default.
- W4385804971 cites W3158445386 @default.
- W4385804971 cites W3182710365 @default.
- W4385804971 cites W4292794063 @default.
- W4385804971 cites W4310553896 @default.
- W4385804971 cites W4311143217 @default.
- W4385804971 cites W4319073169 @default.
- W4385804971 cites W4324102004 @default.
- W4385804971 doi "https://doi.org/10.1109/cvprw59228.2023.00618" @default.
- W4385804971 hasPublicationYear "2023" @default.
- W4385804971 type Work @default.
- W4385804971 citedByCount "0" @default.
- W4385804971 crossrefType "proceedings-article" @default.
- W4385804971 hasAuthorship W4385804971A5014324882 @default.
- W4385804971 hasAuthorship W4385804971A5015674113 @default.
- W4385804971 hasConcept C115961682 @default.
- W4385804971 hasConcept C132525143 @default.
- W4385804971 hasConcept C153180895 @default.
- W4385804971 hasConcept C154945302 @default.
- W4385804971 hasConcept C155542232 @default.
- W4385804971 hasConcept C2993807640 @default.
- W4385804971 hasConcept C41008148 @default.
- W4385804971 hasConcept C80444323 @default.
- W4385804971 hasConceptScore W4385804971C115961682 @default.
- W4385804971 hasConceptScore W4385804971C132525143 @default.
- W4385804971 hasConceptScore W4385804971C153180895 @default.
- W4385804971 hasConceptScore W4385804971C154945302 @default.
- W4385804971 hasConceptScore W4385804971C155542232 @default.
- W4385804971 hasConceptScore W4385804971C2993807640 @default.
- W4385804971 hasConceptScore W4385804971C41008148 @default.
- W4385804971 hasConceptScore W4385804971C80444323 @default.
- W4385804971 hasFunder F4320306076 @default.
- W4385804971 hasLocation W43858049711 @default.
- W4385804971 hasOpenAccess W4385804971 @default.
- W4385804971 hasPrimaryLocation W43858049711 @default.
- W4385804971 hasRelatedWork W2033914206 @default.
- W4385804971 hasRelatedWork W2046077695 @default.
- W4385804971 hasRelatedWork W2063765648 @default.
- W4385804971 hasRelatedWork W2146076056 @default.
- W4385804971 hasRelatedWork W2163831990 @default.
- W4385804971 hasRelatedWork W2378160586 @default.
- W4385804971 hasRelatedWork W2726222394 @default.
- W4385804971 hasRelatedWork W2900363363 @default.
- W4385804971 hasRelatedWork W3003836766 @default.
- W4385804971 hasRelatedWork W3196628752 @default.
- W4385804971 isParatext "false" @default.
- W4385804971 isRetracted "false" @default.
- W4385804971 workType "article" @default.