Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385805079> ?p ?o ?g. }
- W4385805079 abstract "We introduce a new golf ball flight model powered by deep learning. Our method combines a physics model with a deep learning model by inserting a neural network directly into the differential equations governing the projectile motion of the golf ball. The role of the neural network is to estimate the aerodynamic coefficients based on the state of the golf ball at each time step. The entire model was made end-to-end differentiable, permitting us to train the neural network using only measured launch conditions and landing positions. However, in experiments we find that using additional loss terms, such as the max height error, improves the accuracy of the predicted landing position. The key to our approach is that we automatically learn the relationship between the aerodynamic coefficients and the state of the golf ball directly from the data as opposed to manually defining a model that imposes a bias. As a result, we are able to reduce the mean landing position error by 28% compared to a published model that learns the coefficients by fitting polynomials to the spin ratio. Our method is also computationally efficient, with a processing time of 35 ms for a single shot using a CPU." @default.
- W4385805079 created "2023-08-15" @default.
- W4385805079 creator A5071428881 @default.
- W4385805079 creator A5079903916 @default.
- W4385805079 creator A5086620487 @default.
- W4385805079 date "2023-06-01" @default.
- W4385805079 modified "2023-09-26" @default.
- W4385805079 title "Combining Physics and Deep Learning Models to Simulate the Flight of a Golf Ball" @default.
- W4385805079 cites W1972378756 @default.
- W4385805079 cites W1981032725 @default.
- W4385805079 cites W1988745865 @default.
- W4385805079 cites W1992691008 @default.
- W4385805079 cites W1997569703 @default.
- W4385805079 cites W2002999276 @default.
- W4385805079 cites W2006478558 @default.
- W4385805079 cites W2007191505 @default.
- W4385805079 cites W2016680776 @default.
- W4385805079 cites W2034996255 @default.
- W4385805079 cites W2039673107 @default.
- W4385805079 cites W2040350022 @default.
- W4385805079 cites W2042996053 @default.
- W4385805079 cites W2045845108 @default.
- W4385805079 cites W2046778465 @default.
- W4385805079 cites W2067425567 @default.
- W4385805079 cites W2074794165 @default.
- W4385805079 cites W2084042791 @default.
- W4385805079 cites W2085855619 @default.
- W4385805079 cites W2086688177 @default.
- W4385805079 cites W2091085232 @default.
- W4385805079 cites W2107493211 @default.
- W4385805079 cites W2118196640 @default.
- W4385805079 cites W2129578084 @default.
- W4385805079 cites W2132756900 @default.
- W4385805079 cites W2168544014 @default.
- W4385805079 cites W2179528992 @default.
- W4385805079 cites W2295862585 @default.
- W4385805079 cites W2324313263 @default.
- W4385805079 cites W2419095482 @default.
- W4385805079 cites W2464596734 @default.
- W4385805079 cites W2467869173 @default.
- W4385805079 cites W2765577501 @default.
- W4385805079 cites W2772160107 @default.
- W4385805079 cites W2788865504 @default.
- W4385805079 cites W2789581190 @default.
- W4385805079 cites W2790720324 @default.
- W4385805079 cites W2917236425 @default.
- W4385805079 cites W2919115771 @default.
- W4385805079 cites W2964230040 @default.
- W4385805079 cites W2973127894 @default.
- W4385805079 cites W3033841828 @default.
- W4385805079 cites W3034849743 @default.
- W4385805079 cites W3034982441 @default.
- W4385805079 cites W3104240813 @default.
- W4385805079 cites W4220834507 @default.
- W4385805079 cites W4288064946 @default.
- W4385805079 doi "https://doi.org/10.1109/cvprw59228.2023.00540" @default.
- W4385805079 hasPublicationYear "2023" @default.
- W4385805079 type Work @default.
- W4385805079 citedByCount "0" @default.
- W4385805079 crossrefType "proceedings-article" @default.
- W4385805079 hasAuthorship W4385805079A5071428881 @default.
- W4385805079 hasAuthorship W4385805079A5079903916 @default.
- W4385805079 hasAuthorship W4385805079A5086620487 @default.
- W4385805079 hasConcept C10138342 @default.
- W4385805079 hasConcept C11413529 @default.
- W4385805079 hasConcept C121332964 @default.
- W4385805079 hasConcept C122041747 @default.
- W4385805079 hasConcept C127413603 @default.
- W4385805079 hasConcept C13393347 @default.
- W4385805079 hasConcept C134306372 @default.
- W4385805079 hasConcept C146978453 @default.
- W4385805079 hasConcept C154945302 @default.
- W4385805079 hasConcept C162324750 @default.
- W4385805079 hasConcept C191948623 @default.
- W4385805079 hasConcept C198082294 @default.
- W4385805079 hasConcept C202615002 @default.
- W4385805079 hasConcept C2775924081 @default.
- W4385805079 hasConcept C33923547 @default.
- W4385805079 hasConcept C41008148 @default.
- W4385805079 hasConcept C44154836 @default.
- W4385805079 hasConcept C47446073 @default.
- W4385805079 hasConcept C49304495 @default.
- W4385805079 hasConcept C50644808 @default.
- W4385805079 hasConcept C62520636 @default.
- W4385805079 hasConceptScore W4385805079C10138342 @default.
- W4385805079 hasConceptScore W4385805079C11413529 @default.
- W4385805079 hasConceptScore W4385805079C121332964 @default.
- W4385805079 hasConceptScore W4385805079C122041747 @default.
- W4385805079 hasConceptScore W4385805079C127413603 @default.
- W4385805079 hasConceptScore W4385805079C13393347 @default.
- W4385805079 hasConceptScore W4385805079C134306372 @default.
- W4385805079 hasConceptScore W4385805079C146978453 @default.
- W4385805079 hasConceptScore W4385805079C154945302 @default.
- W4385805079 hasConceptScore W4385805079C162324750 @default.
- W4385805079 hasConceptScore W4385805079C191948623 @default.
- W4385805079 hasConceptScore W4385805079C198082294 @default.
- W4385805079 hasConceptScore W4385805079C202615002 @default.
- W4385805079 hasConceptScore W4385805079C2775924081 @default.
- W4385805079 hasConceptScore W4385805079C33923547 @default.
- W4385805079 hasConceptScore W4385805079C41008148 @default.