Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385805217> ?p ?o ?g. }
- W4385805217 abstract "Recently, the single image super-resolution (SISR) based on deep learning algorithm has taken more attention from the research community. There are many methods that are developed to solve this task using CNNs methods. However, most of these methods need large computational resources and consume more runtime. Due to the fact that the runtime is essential for some applications, we propose a mixer-based local residual network (MLRN) for lightweight image super-resolution (SR). The idea of the MLRN model is based on mixing channel and spatial features and mixing low and high-frequency information. This is done by designing a mixer local residual block (MLRB) to be the backbone of our model. Moreover, the bilinear up-sampling is utilized to transfer and mix low-frequency information with extracted high-frequency information. Finally, the GELU activation is used in the main model, proving its efficiency for the SR task. The experimental results show the effectiveness of the model against other state-of-the-art lightweight models. Finally, we took part in the Efficient Super-Resolution 2023 Challenge and achieved good results." @default.
- W4385805217 created "2023-08-15" @default.
- W4385805217 creator A5012461549 @default.
- W4385805217 creator A5018265021 @default.
- W4385805217 creator A5054897331 @default.
- W4385805217 creator A5080452157 @default.
- W4385805217 date "2023-06-01" @default.
- W4385805217 modified "2023-09-29" @default.
- W4385805217 title "Mixer-based Local Residual Network for Lightweight Image Super-resolution" @default.
- W4385805217 cites W1930824406 @default.
- W4385805217 cites W2047920195 @default.
- W4385805217 cites W2110158442 @default.
- W4385805217 cites W2133665775 @default.
- W4385805217 cites W2192954843 @default.
- W4385805217 cites W2503339013 @default.
- W4385805217 cites W2741137940 @default.
- W4385805217 cites W2795024892 @default.
- W4385805217 cites W2954930822 @default.
- W4385805217 cites W2982389494 @default.
- W4385805217 cites W3011005573 @default.
- W4385805217 cites W3013529009 @default.
- W4385805217 cites W3034247386 @default.
- W4385805217 cites W3040726448 @default.
- W4385805217 cites W3105328221 @default.
- W4385805217 cites W3193148745 @default.
- W4385805217 cites W3207918547 @default.
- W4385805217 cites W4206597275 @default.
- W4385805217 cites W4224230993 @default.
- W4385805217 cites W4224260946 @default.
- W4385805217 cites W4224936543 @default.
- W4385805217 cites W4226542813 @default.
- W4385805217 cites W4280491778 @default.
- W4385805217 cites W4280605878 @default.
- W4385805217 cites W4280626040 @default.
- W4385805217 cites W4281670300 @default.
- W4385805217 cites W4284975674 @default.
- W4385805217 cites W4285605712 @default.
- W4385805217 cites W4292794055 @default.
- W4385805217 cites W4293652170 @default.
- W4385805217 cites W4297497086 @default.
- W4385805217 cites W4312227157 @default.
- W4385805217 cites W4312338828 @default.
- W4385805217 cites W4312554314 @default.
- W4385805217 cites W4312718416 @default.
- W4385805217 cites W4319159897 @default.
- W4385805217 cites W4385805159 @default.
- W4385805217 cites W4385815481 @default.
- W4385805217 cites W54257720 @default.
- W4385805217 doi "https://doi.org/10.1109/cvprw59228.2023.00161" @default.
- W4385805217 hasPublicationYear "2023" @default.
- W4385805217 type Work @default.
- W4385805217 citedByCount "2" @default.
- W4385805217 countsByYear W43858052172023 @default.
- W4385805217 crossrefType "proceedings-article" @default.
- W4385805217 hasAuthorship W4385805217A5012461549 @default.
- W4385805217 hasAuthorship W4385805217A5018265021 @default.
- W4385805217 hasAuthorship W4385805217A5054897331 @default.
- W4385805217 hasAuthorship W4385805217A5080452157 @default.
- W4385805217 hasConcept C11413529 @default.
- W4385805217 hasConcept C115961682 @default.
- W4385805217 hasConcept C124101348 @default.
- W4385805217 hasConcept C127413603 @default.
- W4385805217 hasConcept C153180895 @default.
- W4385805217 hasConcept C154945302 @default.
- W4385805217 hasConcept C155512373 @default.
- W4385805217 hasConcept C201995342 @default.
- W4385805217 hasConcept C205203396 @default.
- W4385805217 hasConcept C205372480 @default.
- W4385805217 hasConcept C2524010 @default.
- W4385805217 hasConcept C2777210771 @default.
- W4385805217 hasConcept C2780451532 @default.
- W4385805217 hasConcept C31972630 @default.
- W4385805217 hasConcept C33923547 @default.
- W4385805217 hasConcept C41008148 @default.
- W4385805217 hasConceptScore W4385805217C11413529 @default.
- W4385805217 hasConceptScore W4385805217C115961682 @default.
- W4385805217 hasConceptScore W4385805217C124101348 @default.
- W4385805217 hasConceptScore W4385805217C127413603 @default.
- W4385805217 hasConceptScore W4385805217C153180895 @default.
- W4385805217 hasConceptScore W4385805217C154945302 @default.
- W4385805217 hasConceptScore W4385805217C155512373 @default.
- W4385805217 hasConceptScore W4385805217C201995342 @default.
- W4385805217 hasConceptScore W4385805217C205203396 @default.
- W4385805217 hasConceptScore W4385805217C205372480 @default.
- W4385805217 hasConceptScore W4385805217C2524010 @default.
- W4385805217 hasConceptScore W4385805217C2777210771 @default.
- W4385805217 hasConceptScore W4385805217C2780451532 @default.
- W4385805217 hasConceptScore W4385805217C31972630 @default.
- W4385805217 hasConceptScore W4385805217C33923547 @default.
- W4385805217 hasConceptScore W4385805217C41008148 @default.
- W4385805217 hasFunder F4320321001 @default.
- W4385805217 hasFunder F4320335777 @default.
- W4385805217 hasLocation W43858052171 @default.
- W4385805217 hasOpenAccess W4385805217 @default.
- W4385805217 hasPrimaryLocation W43858052171 @default.
- W4385805217 hasRelatedWork W2033914206 @default.
- W4385805217 hasRelatedWork W2081647779 @default.
- W4385805217 hasRelatedWork W2146076056 @default.
- W4385805217 hasRelatedWork W2387989637 @default.
- W4385805217 hasRelatedWork W2809253131 @default.