Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385805218> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4385805218 abstract "Data augmentation is a promising technique for unsupervised anomaly detection in industrial applications, where the availability of positive samples is often limited due to factors such as commercial competition and sample collection difficulties. In this paper, how to effectively select and apply data augmentation methods for unsupervised anomaly detection is studied. The impact of various data augmentation methods on different anomaly detection algorithms is systematically investigated through experiments. The experimental results show that the performance of different industrial image anomaly detection (termed as IAD) algorithms is not significantly affected by the specific data augmentation method employed and that combining multiple data augmentation methods does not necessarily yield further improvements in the accuracy of anomaly detection, although it can achieve excellent results on specific methods. These findings provide useful guidance on selecting appropriate data augmentation methods for different requirements in IAD." @default.
- W4385805218 created "2023-08-15" @default.
- W4385805218 creator A5002692186 @default.
- W4385805218 creator A5009762023 @default.
- W4385805218 creator A5032314861 @default.
- W4385805218 creator A5044022943 @default.
- W4385805218 creator A5045960607 @default.
- W4385805218 creator A5049087396 @default.
- W4385805218 creator A5055402306 @default.
- W4385805218 creator A5074844292 @default.
- W4385805218 date "2023-06-01" @default.
- W4385805218 modified "2023-10-16" @default.
- W4385805218 title "What Makes a Good Data Augmentation for Few-Shot Unsupervised Image Anomaly Detection?" @default.
- W4385805218 cites W2888407265 @default.
- W4385805218 cites W2948982773 @default.
- W4385805218 cites W3034314048 @default.
- W4385805218 cites W3092704883 @default.
- W4385805218 cites W3118895125 @default.
- W4385805218 cites W3147184966 @default.
- W4385805218 cites W3159879667 @default.
- W4385805218 cites W3166166117 @default.
- W4385805218 cites W3167437959 @default.
- W4385805218 cites W3169077988 @default.
- W4385805218 cites W3169651898 @default.
- W4385805218 cites W3183588514 @default.
- W4385805218 cites W3194129848 @default.
- W4385805218 cites W3204520143 @default.
- W4385805218 cites W3209793239 @default.
- W4385805218 cites W4214694907 @default.
- W4385805218 cites W4287887190 @default.
- W4385805218 cites W4312298392 @default.
- W4385805218 cites W4312772600 @default.
- W4385805218 doi "https://doi.org/10.1109/cvprw59228.2023.00457" @default.
- W4385805218 hasPublicationYear "2023" @default.
- W4385805218 type Work @default.
- W4385805218 citedByCount "0" @default.
- W4385805218 crossrefType "proceedings-article" @default.
- W4385805218 hasAuthorship W4385805218A5002692186 @default.
- W4385805218 hasAuthorship W4385805218A5009762023 @default.
- W4385805218 hasAuthorship W4385805218A5032314861 @default.
- W4385805218 hasAuthorship W4385805218A5044022943 @default.
- W4385805218 hasAuthorship W4385805218A5045960607 @default.
- W4385805218 hasAuthorship W4385805218A5049087396 @default.
- W4385805218 hasAuthorship W4385805218A5055402306 @default.
- W4385805218 hasAuthorship W4385805218A5074844292 @default.
- W4385805218 hasBestOaLocation W43858052182 @default.
- W4385805218 hasConcept C115961682 @default.
- W4385805218 hasConcept C121332964 @default.
- W4385805218 hasConcept C124101348 @default.
- W4385805218 hasConcept C12997251 @default.
- W4385805218 hasConcept C153180895 @default.
- W4385805218 hasConcept C154945302 @default.
- W4385805218 hasConcept C185592680 @default.
- W4385805218 hasConcept C198531522 @default.
- W4385805218 hasConcept C26873012 @default.
- W4385805218 hasConcept C41008148 @default.
- W4385805218 hasConcept C43617362 @default.
- W4385805218 hasConcept C739882 @default.
- W4385805218 hasConceptScore W4385805218C115961682 @default.
- W4385805218 hasConceptScore W4385805218C121332964 @default.
- W4385805218 hasConceptScore W4385805218C124101348 @default.
- W4385805218 hasConceptScore W4385805218C12997251 @default.
- W4385805218 hasConceptScore W4385805218C153180895 @default.
- W4385805218 hasConceptScore W4385805218C154945302 @default.
- W4385805218 hasConceptScore W4385805218C185592680 @default.
- W4385805218 hasConceptScore W4385805218C198531522 @default.
- W4385805218 hasConceptScore W4385805218C26873012 @default.
- W4385805218 hasConceptScore W4385805218C41008148 @default.
- W4385805218 hasConceptScore W4385805218C43617362 @default.
- W4385805218 hasConceptScore W4385805218C739882 @default.
- W4385805218 hasFunder F4320321001 @default.
- W4385805218 hasLocation W43858052181 @default.
- W4385805218 hasLocation W43858052182 @default.
- W4385805218 hasOpenAccess W4385805218 @default.
- W4385805218 hasPrimaryLocation W43858052181 @default.
- W4385805218 hasRelatedWork W2042251007 @default.
- W4385805218 hasRelatedWork W2063729131 @default.
- W4385805218 hasRelatedWork W2065643612 @default.
- W4385805218 hasRelatedWork W2076520961 @default.
- W4385805218 hasRelatedWork W2110365568 @default.
- W4385805218 hasRelatedWork W2405147214 @default.
- W4385805218 hasRelatedWork W2619477556 @default.
- W4385805218 hasRelatedWork W2984111956 @default.
- W4385805218 hasRelatedWork W4311571903 @default.
- W4385805218 hasRelatedWork W2130317780 @default.
- W4385805218 isParatext "false" @default.
- W4385805218 isRetracted "false" @default.
- W4385805218 workType "article" @default.