Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385806809> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4385806809 abstract "The electrocatalytic oxygen reduction reaction (ORR) plays a crucial role in numerous energy and sustainability systems, such as fuel cells, metal-air batteries, and water electrolysers. It holds significant potential for renewable energy generation, transportation, and storage, heralding a cleaner and more sustainable future. Recent trends have shown increased use of single-atom catalysts (SACs), particularly metal-N4 moieties grown on graphene-based 2D materials, for enhancing ORR efficiency. However, the rational design of SAC for high-performance ORR faces challenges due to unclear structure-property relationships and the limits of conventional experimental trial-and-error approaches. In this study, we harnessed the power of the density functional theory (DFT) calculations, combined with cutting-edge machine learning (ML) techniques, to explore 144 SACs featuring dual interacting M1-N4 and M2-N4 moieties (M1, M2 = Mn, Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag Ir, Pt, Au), denoted as M1-M2, grown on graphene. Of all the catalysts we examined, Fe-Pd emerged as the top performer, achieving an impressive overpotential of 0.980 V in alkaline conditions — outperforming most previously reported SACs. Even more striking, 25 of the evaluated SACs surpassed the renowned Fe-N4 SAC in catalytic efficiency, including more economically viable alternatives like Fe-Ag. Venturing further, we developed three ML models that accurately predict the overpotentials of various M1-M2 SACs, showing their strong ability to capture the relationship between single-atom metal site properties and overpotential. These models provide useful navigation toolkits for the rational design of effective electrocatalysts. Our study sheds light on the path toward achieving efficient SAC-catalyzed ORR, contributing to a more sustainable and energy-efficient future." @default.
- W4385806809 created "2023-08-15" @default.
- W4385806809 creator A5053465205 @default.
- W4385806809 creator A5073658998 @default.
- W4385806809 date "2023-08-14" @default.
- W4385806809 modified "2023-10-02" @default.
- W4385806809 title "Fine-Tuning Dual Single-Atom Metal Sites on Graphene Toward Enhanced ORR Activity" @default.
- W4385806809 doi "https://doi.org/10.26434/chemrxiv-2023-cxfm5-v3" @default.
- W4385806809 hasPublicationYear "2023" @default.
- W4385806809 type Work @default.
- W4385806809 citedByCount "0" @default.
- W4385806809 crossrefType "posted-content" @default.
- W4385806809 hasAuthorship W4385806809A5053465205 @default.
- W4385806809 hasAuthorship W4385806809A5073658998 @default.
- W4385806809 hasBestOaLocation W43858068091 @default.
- W4385806809 hasConcept C119599485 @default.
- W4385806809 hasConcept C124952713 @default.
- W4385806809 hasConcept C127413603 @default.
- W4385806809 hasConcept C142362112 @default.
- W4385806809 hasConcept C147597530 @default.
- W4385806809 hasConcept C147789679 @default.
- W4385806809 hasConcept C152365726 @default.
- W4385806809 hasConcept C161790260 @default.
- W4385806809 hasConcept C171250308 @default.
- W4385806809 hasConcept C17525397 @default.
- W4385806809 hasConcept C178790620 @default.
- W4385806809 hasConcept C185592680 @default.
- W4385806809 hasConcept C186460083 @default.
- W4385806809 hasConcept C188573790 @default.
- W4385806809 hasConcept C191897082 @default.
- W4385806809 hasConcept C192562407 @default.
- W4385806809 hasConcept C2780980858 @default.
- W4385806809 hasConcept C30080830 @default.
- W4385806809 hasConcept C42360764 @default.
- W4385806809 hasConcept C52859227 @default.
- W4385806809 hasConcept C53105671 @default.
- W4385806809 hasConcept C544153396 @default.
- W4385806809 hasConceptScore W4385806809C119599485 @default.
- W4385806809 hasConceptScore W4385806809C124952713 @default.
- W4385806809 hasConceptScore W4385806809C127413603 @default.
- W4385806809 hasConceptScore W4385806809C142362112 @default.
- W4385806809 hasConceptScore W4385806809C147597530 @default.
- W4385806809 hasConceptScore W4385806809C147789679 @default.
- W4385806809 hasConceptScore W4385806809C152365726 @default.
- W4385806809 hasConceptScore W4385806809C161790260 @default.
- W4385806809 hasConceptScore W4385806809C171250308 @default.
- W4385806809 hasConceptScore W4385806809C17525397 @default.
- W4385806809 hasConceptScore W4385806809C178790620 @default.
- W4385806809 hasConceptScore W4385806809C185592680 @default.
- W4385806809 hasConceptScore W4385806809C186460083 @default.
- W4385806809 hasConceptScore W4385806809C188573790 @default.
- W4385806809 hasConceptScore W4385806809C191897082 @default.
- W4385806809 hasConceptScore W4385806809C192562407 @default.
- W4385806809 hasConceptScore W4385806809C2780980858 @default.
- W4385806809 hasConceptScore W4385806809C30080830 @default.
- W4385806809 hasConceptScore W4385806809C42360764 @default.
- W4385806809 hasConceptScore W4385806809C52859227 @default.
- W4385806809 hasConceptScore W4385806809C53105671 @default.
- W4385806809 hasConceptScore W4385806809C544153396 @default.
- W4385806809 hasLocation W43858068091 @default.
- W4385806809 hasOpenAccess W4385806809 @default.
- W4385806809 hasPrimaryLocation W43858068091 @default.
- W4385806809 hasRelatedWork W2134948224 @default.
- W4385806809 hasRelatedWork W2137163290 @default.
- W4385806809 hasRelatedWork W2145386651 @default.
- W4385806809 hasRelatedWork W2414885887 @default.
- W4385806809 hasRelatedWork W2570068767 @default.
- W4385806809 hasRelatedWork W2748952813 @default.
- W4385806809 hasRelatedWork W2769077900 @default.
- W4385806809 hasRelatedWork W2896640114 @default.
- W4385806809 hasRelatedWork W2899084033 @default.
- W4385806809 hasRelatedWork W3111609763 @default.
- W4385806809 isParatext "false" @default.
- W4385806809 isRetracted "false" @default.
- W4385806809 workType "article" @default.