Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385812812> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W4385812812 endingPage "9233" @default.
- W4385812812 startingPage "9233" @default.
- W4385812812 abstract "Brain–computer interface (BCI) technology enables humans to interact with computers by collecting and decoding electroencephalogram (EEG) from the brain. For practical BCIs based on EEG, accurate recognition is crucial. However, existing methods often struggle to achieve a balance between accuracy and complexity. To overcome these challenges, we propose 1D convolutional neural networks with bidirectional recurrent attention unit network (1DCNN-BiRAU) based on a random segment recombination strategy (segment pool, SegPool). It has three main contributions. First, SegPool is proposed to increase training data diversity and reduce the impact of a single splicing method on model performance across different tasks. Second, it employs multiple 1D CNNs, including local and global models, to extract channel information with simplicity and efficiency. Third, BiRAU is introduced to learn temporal information and identify key features in time-series data, using forward–backward networks and an attention gate in the RAU. The experiments show that our model is effective and robust, achieving accuracy of 99.47% and 91.21% in binary classification at the individual and group levels, and 90.90% and 92.18% in four-category classification. Our model demonstrates promising results for recognizing human motor imagery and has the potential to be applied in practical scenarios such as brain–computer interfaces and neurological disorder diagnosis." @default.
- W4385812812 created "2023-08-15" @default.
- W4385812812 creator A5004398947 @default.
- W4385812812 creator A5007913722 @default.
- W4385812812 creator A5026015955 @default.
- W4385812812 creator A5029762841 @default.
- W4385812812 creator A5031948259 @default.
- W4385812812 creator A5045408151 @default.
- W4385812812 creator A5060585396 @default.
- W4385812812 creator A5084939652 @default.
- W4385812812 date "2023-08-14" @default.
- W4385812812 modified "2023-09-26" @default.
- W4385812812 title "Effective Human Motor Imagery Recognition via Segment Pool Based on One-Dimensional Convolutional Neural Network with Bidirectional Recurrent Attention Unit Network" @default.
- W4385812812 cites W1877153489 @default.
- W4385812812 cites W2151669316 @default.
- W4385812812 cites W2153378539 @default.
- W4385812812 cites W2162800060 @default.
- W4385812812 cites W2888355470 @default.
- W4385812812 cites W2896120927 @default.
- W4385812812 cites W2898352483 @default.
- W4385812812 cites W2919403121 @default.
- W4385812812 cites W2963355311 @default.
- W4385812812 cites W2999520050 @default.
- W4385812812 cites W3004827935 @default.
- W4385812812 cites W3090788672 @default.
- W4385812812 cites W3100777112 @default.
- W4385812812 cites W3194020089 @default.
- W4385812812 cites W4211170405 @default.
- W4385812812 cites W4285336661 @default.
- W4385812812 cites W4297226171 @default.
- W4385812812 cites W4306756967 @default.
- W4385812812 cites W4308150438 @default.
- W4385812812 cites W4382932909 @default.
- W4385812812 doi "https://doi.org/10.3390/app13169233" @default.
- W4385812812 hasPublicationYear "2023" @default.
- W4385812812 type Work @default.
- W4385812812 citedByCount "0" @default.
- W4385812812 crossrefType "journal-article" @default.
- W4385812812 hasAuthorship W4385812812A5004398947 @default.
- W4385812812 hasAuthorship W4385812812A5007913722 @default.
- W4385812812 hasAuthorship W4385812812A5026015955 @default.
- W4385812812 hasAuthorship W4385812812A5029762841 @default.
- W4385812812 hasAuthorship W4385812812A5031948259 @default.
- W4385812812 hasAuthorship W4385812812A5045408151 @default.
- W4385812812 hasAuthorship W4385812812A5060585396 @default.
- W4385812812 hasAuthorship W4385812812A5084939652 @default.
- W4385812812 hasBestOaLocation W43858128121 @default.
- W4385812812 hasConcept C113843644 @default.
- W4385812812 hasConcept C118552586 @default.
- W4385812812 hasConcept C119857082 @default.
- W4385812812 hasConcept C129307140 @default.
- W4385812812 hasConcept C153180895 @default.
- W4385812812 hasConcept C154945302 @default.
- W4385812812 hasConcept C15744967 @default.
- W4385812812 hasConcept C157915830 @default.
- W4385812812 hasConcept C173201364 @default.
- W4385812812 hasConcept C173608175 @default.
- W4385812812 hasConcept C41008148 @default.
- W4385812812 hasConcept C522805319 @default.
- W4385812812 hasConcept C54808283 @default.
- W4385812812 hasConcept C81363708 @default.
- W4385812812 hasConceptScore W4385812812C113843644 @default.
- W4385812812 hasConceptScore W4385812812C118552586 @default.
- W4385812812 hasConceptScore W4385812812C119857082 @default.
- W4385812812 hasConceptScore W4385812812C129307140 @default.
- W4385812812 hasConceptScore W4385812812C153180895 @default.
- W4385812812 hasConceptScore W4385812812C154945302 @default.
- W4385812812 hasConceptScore W4385812812C15744967 @default.
- W4385812812 hasConceptScore W4385812812C157915830 @default.
- W4385812812 hasConceptScore W4385812812C173201364 @default.
- W4385812812 hasConceptScore W4385812812C173608175 @default.
- W4385812812 hasConceptScore W4385812812C41008148 @default.
- W4385812812 hasConceptScore W4385812812C522805319 @default.
- W4385812812 hasConceptScore W4385812812C54808283 @default.
- W4385812812 hasConceptScore W4385812812C81363708 @default.
- W4385812812 hasIssue "16" @default.
- W4385812812 hasLocation W43858128121 @default.
- W4385812812 hasOpenAccess W4385812812 @default.
- W4385812812 hasPrimaryLocation W43858128121 @default.
- W4385812812 hasRelatedWork W131149161 @default.
- W4385812812 hasRelatedWork W1530078976 @default.
- W4385812812 hasRelatedWork W1978174090 @default.
- W4385812812 hasRelatedWork W1979904433 @default.
- W4385812812 hasRelatedWork W1984377984 @default.
- W4385812812 hasRelatedWork W2020519896 @default.
- W4385812812 hasRelatedWork W2946091890 @default.
- W4385812812 hasRelatedWork W2969456792 @default.
- W4385812812 hasRelatedWork W2990561443 @default.
- W4385812812 hasRelatedWork W3155355436 @default.
- W4385812812 hasVolume "13" @default.
- W4385812812 isParatext "false" @default.
- W4385812812 isRetracted "false" @default.
- W4385812812 workType "article" @default.