Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385814211> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W4385814211 endingPage "119510" @default.
- W4385814211 startingPage "119510" @default.
- W4385814211 abstract "Modeling the dynamics of sequential patterns (i.e., sequential recommendation) has obtained great attention, where the key problem is how to infer the next interesting item according to users' historical actions. Owing to high efficiency and accuracy, several Transformer-like frameworks have successfully achieved this task without adopting complicated recurrent or convolutional operations. Nevertheless, they focus only on the user-item bipartite graph and forgo other auxiliary information, which is non-trivial to attain satisfactory performance especially under long-tail distribution scenarios. In modeling short-term user interests, they fail to capture the time intervals between the recent actions and the target timestamp, which may result in the suboptimal performance. To settle such two problems, we propose a novel architecture for the task of sequential recommendation, namely graph-coupled time interval network (GCTN). Specifically, by means of item category information, we devise a category-aware graph propagation module to better learn user and item embeddings. Furthermore, we design a time-aware self-attention mechanism, which explicitly captures the effect of the time interval between two actions for next item prediction. To integrate these two parts into an organic whole, we introduce a personalized gating strategy to differentiate the importance of each part under the special context. Extensive experiments demonstrate the effectiveness and efficiency of GCTN over recent state-of-the-art methods on four real-world datasets, seamlessly combing the advantages of graph neural networks and Transformers." @default.
- W4385814211 created "2023-08-15" @default.
- W4385814211 creator A5005167596 @default.
- W4385814211 creator A5022548657 @default.
- W4385814211 creator A5045940041 @default.
- W4385814211 creator A5047807693 @default.
- W4385814211 creator A5062700022 @default.
- W4385814211 date "2023-11-01" @default.
- W4385814211 modified "2023-10-14" @default.
- W4385814211 title "Graph-Coupled Time Interval Network for Sequential Recommendation" @default.
- W4385814211 cites W2064675550 @default.
- W4385814211 cites W2802187397 @default.
- W4385814211 cites W2896493247 @default.
- W4385814211 cites W2897610297 @default.
- W4385814211 cites W2980733333 @default.
- W4385814211 cites W2980778868 @default.
- W4385814211 cites W3021893476 @default.
- W4385814211 cites W4205132462 @default.
- W4385814211 cites W4210264905 @default.
- W4385814211 cites W4213217984 @default.
- W4385814211 cites W4224230118 @default.
- W4385814211 cites W4283714253 @default.
- W4385814211 cites W4285806565 @default.
- W4385814211 doi "https://doi.org/10.1016/j.ins.2023.119510" @default.
- W4385814211 hasPublicationYear "2023" @default.
- W4385814211 type Work @default.
- W4385814211 citedByCount "0" @default.
- W4385814211 crossrefType "journal-article" @default.
- W4385814211 hasAuthorship W4385814211A5005167596 @default.
- W4385814211 hasAuthorship W4385814211A5022548657 @default.
- W4385814211 hasAuthorship W4385814211A5045940041 @default.
- W4385814211 hasAuthorship W4385814211A5047807693 @default.
- W4385814211 hasAuthorship W4385814211A5062700022 @default.
- W4385814211 hasConcept C113954288 @default.
- W4385814211 hasConcept C119857082 @default.
- W4385814211 hasConcept C121332964 @default.
- W4385814211 hasConcept C124101348 @default.
- W4385814211 hasConcept C132525143 @default.
- W4385814211 hasConcept C154945302 @default.
- W4385814211 hasConcept C165801399 @default.
- W4385814211 hasConcept C197657726 @default.
- W4385814211 hasConcept C41008148 @default.
- W4385814211 hasConcept C62520636 @default.
- W4385814211 hasConcept C66322947 @default.
- W4385814211 hasConcept C79403827 @default.
- W4385814211 hasConcept C80444323 @default.
- W4385814211 hasConceptScore W4385814211C113954288 @default.
- W4385814211 hasConceptScore W4385814211C119857082 @default.
- W4385814211 hasConceptScore W4385814211C121332964 @default.
- W4385814211 hasConceptScore W4385814211C124101348 @default.
- W4385814211 hasConceptScore W4385814211C132525143 @default.
- W4385814211 hasConceptScore W4385814211C154945302 @default.
- W4385814211 hasConceptScore W4385814211C165801399 @default.
- W4385814211 hasConceptScore W4385814211C197657726 @default.
- W4385814211 hasConceptScore W4385814211C41008148 @default.
- W4385814211 hasConceptScore W4385814211C62520636 @default.
- W4385814211 hasConceptScore W4385814211C66322947 @default.
- W4385814211 hasConceptScore W4385814211C79403827 @default.
- W4385814211 hasConceptScore W4385814211C80444323 @default.
- W4385814211 hasLocation W43858142111 @default.
- W4385814211 hasOpenAccess W4385814211 @default.
- W4385814211 hasPrimaryLocation W43858142111 @default.
- W4385814211 hasRelatedWork W105617988 @default.
- W4385814211 hasRelatedWork W1547043107 @default.
- W4385814211 hasRelatedWork W1606975172 @default.
- W4385814211 hasRelatedWork W2368138740 @default.
- W4385814211 hasRelatedWork W2961085424 @default.
- W4385814211 hasRelatedWork W2966366588 @default.
- W4385814211 hasRelatedWork W4244121124 @default.
- W4385814211 hasRelatedWork W4286629047 @default.
- W4385814211 hasRelatedWork W4306674287 @default.
- W4385814211 hasRelatedWork W4224009465 @default.
- W4385814211 hasVolume "648" @default.
- W4385814211 isParatext "false" @default.
- W4385814211 isRetracted "false" @default.
- W4385814211 workType "article" @default.