Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385830108> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W4385830108 endingPage "035038" @default.
- W4385830108 startingPage "035038" @default.
- W4385830108 abstract "Abstract The infiltrative nature of malignant gliomas results in active tumor spreading into the peritumoral edema, which is not visible in conventional magnetic resonance imaging (cMRI) even after contrast injection. MR relaxometry (qMRI) measures relaxation rates dependent on tissue properties and can offer additional contrast mechanisms to highlight the non-enhancing infiltrative tumor. To investigate if qMRI data provides additional information compared to cMRI sequences when considering deep learning-based brain tumor detection and segmentation, preoperative conventional (T1w per- and post-contrast, T2w and FLAIR) and quantitative (pre- and post-contrast R 1 , R 2 and proton density) MR data was obtained from 23 patients with typical radiological findings suggestive of a high-grade glioma. 2D deep learning models were trained on transversal slices ( n = 528) for tumor detection and segmentation using either cMRI or qMRI. Moreover, trends in quantitative R 1 and R 2 rates of regions identified as relevant for tumor detection by model explainability methods were qualitatively analyzed. Tumor detection and segmentation performance for models trained with a combination of qMRI pre- and post-contrast was the highest (detection Matthews correlation coefficient (MCC) = 0.72, segmentation dice similarity coefficient (DSC) = 0.90), however, the difference compared to cMRI was not statistically significant. Overall analysis of the relevant regions identified using model explainability showed no differences between models trained on cMRI or qMRI. When looking at the individual cases, relaxation rates of brain regions outside the annotation and identified as relevant for tumor detection exhibited changes after contrast injection similar to region inside the annotation in the majority of cases. In conclusion, models trained on qMRI data obtained similar detection and segmentation performance to those trained on cMRI data, with the advantage of quantitatively measuring brain tissue properties within a similar scan time. When considering individual patients, the analysis of relaxation rates of regions identified by model explainability suggests the presence of infiltrative tumor outside the cMRI-based tumor annotation." @default.
- W4385830108 created "2023-08-16" @default.
- W4385830108 creator A5008925868 @default.
- W4385830108 creator A5052429045 @default.
- W4385830108 creator A5076640188 @default.
- W4385830108 creator A5083149360 @default.
- W4385830108 date "2023-09-01" @default.
- W4385830108 modified "2023-10-16" @default.
- W4385830108 title "Deep learning-based detection and identification of brain tumor biomarkers in quantitative MR-images" @default.
- W4385830108 cites W1004583409 @default.
- W4385830108 cites W1641498739 @default.
- W4385830108 cites W1990399594 @default.
- W4385830108 cites W2006096283 @default.
- W4385830108 cites W2021560851 @default.
- W4385830108 cites W2069284781 @default.
- W4385830108 cites W2071881327 @default.
- W4385830108 cites W2078708982 @default.
- W4385830108 cites W2100803151 @default.
- W4385830108 cites W2117140276 @default.
- W4385830108 cites W2123328938 @default.
- W4385830108 cites W2144288697 @default.
- W4385830108 cites W2149694415 @default.
- W4385830108 cites W2159704023 @default.
- W4385830108 cites W2170505850 @default.
- W4385830108 cites W2436534309 @default.
- W4385830108 cites W2526011086 @default.
- W4385830108 cites W2600136254 @default.
- W4385830108 cites W2617669016 @default.
- W4385830108 cites W2620142324 @default.
- W4385830108 cites W2903530218 @default.
- W4385830108 cites W2904531397 @default.
- W4385830108 cites W2911733085 @default.
- W4385830108 cites W2951098593 @default.
- W4385830108 cites W2984102002 @default.
- W4385830108 cites W2999309192 @default.
- W4385830108 cites W3006734558 @default.
- W4385830108 cites W3007302282 @default.
- W4385830108 cites W3026862239 @default.
- W4385830108 cites W3112701542 @default.
- W4385830108 cites W3126232929 @default.
- W4385830108 cites W3127966350 @default.
- W4385830108 cites W3134676911 @default.
- W4385830108 cites W3190652059 @default.
- W4385830108 cites W3196298017 @default.
- W4385830108 cites W3214734349 @default.
- W4385830108 cites W4212782921 @default.
- W4385830108 cites W4235770099 @default.
- W4385830108 cites W4296794216 @default.
- W4385830108 doi "https://doi.org/10.1088/2632-2153/acf095" @default.
- W4385830108 hasPublicationYear "2023" @default.
- W4385830108 type Work @default.
- W4385830108 citedByCount "0" @default.
- W4385830108 crossrefType "journal-article" @default.
- W4385830108 hasAuthorship W4385830108A5008925868 @default.
- W4385830108 hasAuthorship W4385830108A5052429045 @default.
- W4385830108 hasAuthorship W4385830108A5076640188 @default.
- W4385830108 hasAuthorship W4385830108A5083149360 @default.
- W4385830108 hasBestOaLocation W43858301081 @default.
- W4385830108 hasConcept C101070640 @default.
- W4385830108 hasConcept C126838900 @default.
- W4385830108 hasConcept C143409427 @default.
- W4385830108 hasConcept C154945302 @default.
- W4385830108 hasConcept C2776502983 @default.
- W4385830108 hasConcept C41008148 @default.
- W4385830108 hasConcept C71924100 @default.
- W4385830108 hasConcept C89600930 @default.
- W4385830108 hasConceptScore W4385830108C101070640 @default.
- W4385830108 hasConceptScore W4385830108C126838900 @default.
- W4385830108 hasConceptScore W4385830108C143409427 @default.
- W4385830108 hasConceptScore W4385830108C154945302 @default.
- W4385830108 hasConceptScore W4385830108C2776502983 @default.
- W4385830108 hasConceptScore W4385830108C41008148 @default.
- W4385830108 hasConceptScore W4385830108C71924100 @default.
- W4385830108 hasConceptScore W4385830108C89600930 @default.
- W4385830108 hasFunder F4320309792 @default.
- W4385830108 hasFunder F4320312350 @default.
- W4385830108 hasFunder F4320321030 @default.
- W4385830108 hasFunder F4320322581 @default.
- W4385830108 hasIssue "3" @default.
- W4385830108 hasLocation W43858301081 @default.
- W4385830108 hasOpenAccess W4385830108 @default.
- W4385830108 hasPrimaryLocation W43858301081 @default.
- W4385830108 hasRelatedWork W1967112329 @default.
- W4385830108 hasRelatedWork W2001364525 @default.
- W4385830108 hasRelatedWork W2031291453 @default.
- W4385830108 hasRelatedWork W2086384464 @default.
- W4385830108 hasRelatedWork W2098338347 @default.
- W4385830108 hasRelatedWork W2125319897 @default.
- W4385830108 hasRelatedWork W2165532981 @default.
- W4385830108 hasRelatedWork W2887129662 @default.
- W4385830108 hasRelatedWork W3167382736 @default.
- W4385830108 hasRelatedWork W4310330293 @default.
- W4385830108 hasVolume "4" @default.
- W4385830108 isParatext "false" @default.
- W4385830108 isRetracted "false" @default.
- W4385830108 workType "article" @default.