Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385830552> ?p ?o ?g. }
- W4385830552 endingPage "107377" @default.
- W4385830552 startingPage "107377" @default.
- W4385830552 abstract "Cone-beam computed tomography (CBCT) is widely utilized in modern radiotherapy; however, CBCT images exhibit increased scatter artifacts compared to planning CT (pCT), compromising image quality and limiting further applications. Scatter correction is thus crucial for improving CBCT image quality.In this study, we proposed an unsupervised contrastive learning method for CBCT scatter correction. Initially, we transformed low-quality CBCT into high-quality synthetic pCT (spCT) and generated forward projections of CBCT and spCT. By computing the difference between these projections, we obtained a residual image containing image details and scatter artifacts. Image details primarily comprise high-frequency signals, while scatter artifacts consist mainly of low-frequency signals. We extracted the scatter projection signal by applying a low-pass filter to remove image details. The corrected CBCT (cCBCT) projection signal was obtained by subtracting the scatter artifacts projection signal from the original CBCT projection. Finally, we employed the FDK reconstruction algorithm to generate the cCBCT image.To evaluate cCBCT image quality, we aligned the CBCT and pCT of six patients. In comparison to CBCT, cCBCT maintains anatomical consistency and significantly enhances CT number, spatial homogeneity, and artifact suppression. The mean absolute error (MAE) of the test data decreased from 88.0623 ± 26.6700 HU to 17.5086 ± 3.1785 HU. The MAE of fat regions of interest (ROIs) declined from 370.2980 ± 64.9730 HU to 8.5149 ± 1.8265 HU, and the error between their maximum and minimum CT numbers decreased from 572.7528 HU to 132.4648 HU. The MAE of muscle ROIs reduced from 354.7689 ± 25.0139 HU to 16.4475 ± 3.6812 HU. We also compared our proposed method with several conventional unsupervised synthetic image generation techniques, demonstrating superior performance.Our approach effectively enhances CBCT image quality and shows promising potential for future clinical adoption." @default.
- W4385830552 created "2023-08-16" @default.
- W4385830552 creator A5001209636 @default.
- W4385830552 creator A5005988237 @default.
- W4385830552 creator A5040647242 @default.
- W4385830552 creator A5041855241 @default.
- W4385830552 creator A5047810362 @default.
- W4385830552 creator A5049754246 @default.
- W4385830552 creator A5056242195 @default.
- W4385830552 creator A5057823939 @default.
- W4385830552 creator A5073606272 @default.
- W4385830552 creator A5086187557 @default.
- W4385830552 creator A5086784632 @default.
- W4385830552 date "2023-10-01" @default.
- W4385830552 modified "2023-10-16" @default.
- W4385830552 title "An unsupervised dual contrastive learning framework for scatter correction in cone-beam CT image" @default.
- W4385830552 cites W1967172105 @default.
- W4385830552 cites W1980198703 @default.
- W4385830552 cites W2021005515 @default.
- W4385830552 cites W2029927888 @default.
- W4385830552 cites W2043193153 @default.
- W4385830552 cites W2050624834 @default.
- W4385830552 cites W2055031858 @default.
- W4385830552 cites W2056418175 @default.
- W4385830552 cites W2060193743 @default.
- W4385830552 cites W2068640565 @default.
- W4385830552 cites W2072021306 @default.
- W4385830552 cites W2073585401 @default.
- W4385830552 cites W2082419455 @default.
- W4385830552 cites W2098925088 @default.
- W4385830552 cites W2149489589 @default.
- W4385830552 cites W2157812230 @default.
- W4385830552 cites W2161897447 @default.
- W4385830552 cites W2167743154 @default.
- W4385830552 cites W2175952604 @default.
- W4385830552 cites W2194775991 @default.
- W4385830552 cites W2325433237 @default.
- W4385830552 cites W2593414223 @default.
- W4385830552 cites W2761352835 @default.
- W4385830552 cites W2763125210 @default.
- W4385830552 cites W2890756907 @default.
- W4385830552 cites W2898680361 @default.
- W4385830552 cites W2944050657 @default.
- W4385830552 cites W2944123384 @default.
- W4385830552 cites W2947819416 @default.
- W4385830552 cites W2947990864 @default.
- W4385830552 cites W2962793481 @default.
- W4385830552 cites W2963073614 @default.
- W4385830552 cites W3096831136 @default.
- W4385830552 cites W3103316509 @default.
- W4385830552 cites W3108923139 @default.
- W4385830552 cites W3139088509 @default.
- W4385830552 cites W3169902780 @default.
- W4385830552 cites W3173268697 @default.
- W4385830552 cites W4212923017 @default.
- W4385830552 cites W4291709056 @default.
- W4385830552 cites W4292183902 @default.
- W4385830552 cites W4294989951 @default.
- W4385830552 cites W4312093881 @default.
- W4385830552 doi "https://doi.org/10.1016/j.compbiomed.2023.107377" @default.
- W4385830552 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37651766" @default.
- W4385830552 hasPublicationYear "2023" @default.
- W4385830552 type Work @default.
- W4385830552 citedByCount "0" @default.
- W4385830552 crossrefType "journal-article" @default.
- W4385830552 hasAuthorship W4385830552A5001209636 @default.
- W4385830552 hasAuthorship W4385830552A5005988237 @default.
- W4385830552 hasAuthorship W4385830552A5040647242 @default.
- W4385830552 hasAuthorship W4385830552A5041855241 @default.
- W4385830552 hasAuthorship W4385830552A5047810362 @default.
- W4385830552 hasAuthorship W4385830552A5049754246 @default.
- W4385830552 hasAuthorship W4385830552A5056242195 @default.
- W4385830552 hasAuthorship W4385830552A5057823939 @default.
- W4385830552 hasAuthorship W4385830552A5073606272 @default.
- W4385830552 hasAuthorship W4385830552A5086187557 @default.
- W4385830552 hasAuthorship W4385830552A5086784632 @default.
- W4385830552 hasConcept C106131492 @default.
- W4385830552 hasConcept C11413529 @default.
- W4385830552 hasConcept C115961682 @default.
- W4385830552 hasConcept C126838900 @default.
- W4385830552 hasConcept C154945302 @default.
- W4385830552 hasConcept C155512373 @default.
- W4385830552 hasConcept C2779010991 @default.
- W4385830552 hasConcept C2779813781 @default.
- W4385830552 hasConcept C2989005 @default.
- W4385830552 hasConcept C3018399558 @default.
- W4385830552 hasConcept C31972630 @default.
- W4385830552 hasConcept C41008148 @default.
- W4385830552 hasConcept C544519230 @default.
- W4385830552 hasConcept C55020928 @default.
- W4385830552 hasConcept C57493831 @default.
- W4385830552 hasConcept C71924100 @default.
- W4385830552 hasConceptScore W4385830552C106131492 @default.
- W4385830552 hasConceptScore W4385830552C11413529 @default.
- W4385830552 hasConceptScore W4385830552C115961682 @default.
- W4385830552 hasConceptScore W4385830552C126838900 @default.
- W4385830552 hasConceptScore W4385830552C154945302 @default.
- W4385830552 hasConceptScore W4385830552C155512373 @default.