Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385830630> ?p ?o ?g. }
- W4385830630 endingPage "e19151" @default.
- W4385830630 startingPage "e19151" @default.
- W4385830630 abstract "Traditional Chinese medicine (TCM) is characterized by multi-components, multiple targets, and complex mechanisms of action and therefore has significant advantages in treating diseases. However, the clinical application of TCM prescriptions is limited due to the difficulty in elucidating the effective substances and the lack of current scientific evidence on the mechanisms of action. In recent years, the development of network pharmacology based on drug systems research has provided a new approach for understanding the complex systems represented by TCM. The determination of drug targets is the core of TCM network pharmacology research. Over the past years, many web tools for drug targets with various features have been developed to facilitate target prediction, significantly promoting drug discovery. Therefore, this review introduces the widely used web tools for compound-target interaction prediction databases and web resources in TCM pharmacology research, and it compares and analyzes each web tool based on their basic properties, including the underlying theory, algorithms, datasets, and search results. Finally, we present the remaining challenges for the promising future of compound-target interaction prediction in TCM pharmacology research. This work may guide researchers in choosing web tools for target prediction and may also help develop more TCM tools based on these existing resources." @default.
- W4385830630 created "2023-08-16" @default.
- W4385830630 creator A5007322862 @default.
- W4385830630 creator A5014086322 @default.
- W4385830630 creator A5022953458 @default.
- W4385830630 creator A5045831653 @default.
- W4385830630 creator A5075816376 @default.
- W4385830630 creator A5083534218 @default.
- W4385830630 date "2023-08-01" @default.
- W4385830630 modified "2023-10-08" @default.
- W4385830630 title "Comprehensive survey of target prediction web servers for Traditional Chinese Medicine" @default.
- W4385830630 cites W1971106435 @default.
- W4385830630 cites W1974884542 @default.
- W4385830630 cites W1975426150 @default.
- W4385830630 cites W1988037271 @default.
- W4385830630 cites W1993352447 @default.
- W4385830630 cites W1993554808 @default.
- W4385830630 cites W2004629718 @default.
- W4385830630 cites W2005329278 @default.
- W4385830630 cites W2031290814 @default.
- W4385830630 cites W2033591223 @default.
- W4385830630 cites W2034042429 @default.
- W4385830630 cites W2038252445 @default.
- W4385830630 cites W2040369353 @default.
- W4385830630 cites W2042952308 @default.
- W4385830630 cites W2044002635 @default.
- W4385830630 cites W2050113624 @default.
- W4385830630 cites W2055147198 @default.
- W4385830630 cites W2070332197 @default.
- W4385830630 cites W2070880994 @default.
- W4385830630 cites W2077268918 @default.
- W4385830630 cites W2079745490 @default.
- W4385830630 cites W2087614968 @default.
- W4385830630 cites W2089506836 @default.
- W4385830630 cites W2093814531 @default.
- W4385830630 cites W2096021562 @default.
- W4385830630 cites W2096525273 @default.
- W4385830630 cites W2096541451 @default.
- W4385830630 cites W2096864392 @default.
- W4385830630 cites W2099536767 @default.
- W4385830630 cites W2099754222 @default.
- W4385830630 cites W2100916935 @default.
- W4385830630 cites W2104916446 @default.
- W4385830630 cites W2108069034 @default.
- W4385830630 cites W2116490460 @default.
- W4385830630 cites W2122652275 @default.
- W4385830630 cites W2124679671 @default.
- W4385830630 cites W2125033229 @default.
- W4385830630 cites W2131347449 @default.
- W4385830630 cites W2132267839 @default.
- W4385830630 cites W2137507165 @default.
- W4385830630 cites W2138180968 @default.
- W4385830630 cites W2142572836 @default.
- W4385830630 cites W2143251418 @default.
- W4385830630 cites W2146907709 @default.
- W4385830630 cites W2156077095 @default.
- W4385830630 cites W2159822007 @default.
- W4385830630 cites W2162011385 @default.
- W4385830630 cites W2168938595 @default.
- W4385830630 cites W2170146596 @default.
- W4385830630 cites W2171482501 @default.
- W4385830630 cites W2279201083 @default.
- W4385830630 cites W2320034101 @default.
- W4385830630 cites W2407564830 @default.
- W4385830630 cites W2558217333 @default.
- W4385830630 cites W2559588208 @default.
- W4385830630 cites W2562651268 @default.
- W4385830630 cites W2590907701 @default.
- W4385830630 cites W2618209086 @default.
- W4385830630 cites W2751900761 @default.
- W4385830630 cites W2787927513 @default.
- W4385830630 cites W2889451214 @default.
- W4385830630 cites W2898468989 @default.
- W4385830630 cites W2899291554 @default.
- W4385830630 cites W2917075888 @default.
- W4385830630 cites W2920735258 @default.
- W4385830630 cites W2966764441 @default.
- W4385830630 cites W2986115017 @default.
- W4385830630 cites W2987928072 @default.
- W4385830630 cites W2998571806 @default.
- W4385830630 cites W3093194543 @default.
- W4385830630 cites W3108860514 @default.
- W4385830630 cites W3201055938 @default.
- W4385830630 cites W4205519906 @default.
- W4385830630 cites W4231041617 @default.
- W4385830630 doi "https://doi.org/10.1016/j.heliyon.2023.e19151" @default.
- W4385830630 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37664753" @default.
- W4385830630 hasPublicationYear "2023" @default.
- W4385830630 type Work @default.
- W4385830630 citedByCount "0" @default.
- W4385830630 crossrefType "journal-article" @default.
- W4385830630 hasAuthorship W4385830630A5007322862 @default.
- W4385830630 hasAuthorship W4385830630A5014086322 @default.
- W4385830630 hasAuthorship W4385830630A5022953458 @default.
- W4385830630 hasAuthorship W4385830630A5045831653 @default.
- W4385830630 hasAuthorship W4385830630A5075816376 @default.
- W4385830630 hasAuthorship W4385830630A5083534218 @default.
- W4385830630 hasBestOaLocation W43858306301 @default.