Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385830646> ?p ?o ?g. }
- W4385830646 endingPage "166316" @default.
- W4385830646 startingPage "166316" @default.
- W4385830646 abstract "Hydrated electrons (eaq-) exhibit rapid degradation of diverse persistent organic contaminants (OCs) and hold great promise as a formidable reducing agent in water treatment. However, the diverse structures of compounds exert different influences on the second-order rate constant of hydrated electron reactions (keaq-), while the same OCs demonstrate notable discrepancies in keaq- values across different pH levels. This study aims to develop machine learning (ML) models that can effectively simulate the intricate reaction kinetics between eaq- and OCs. Furthermore, the introduction of the pH variable enables a comprehensive investigation into the impact of ambient conditions on this process, thereby improving the practicality of the model. A dataset encompassing 701 keaq- values derived from 351 peer-reviewed publications was compiled. To comprehensively investigate compound properties, this study introduced molecular descriptor (MD), molecular fingerprint (MF), and the integration of both (MD + MF) as model variables. Furthermore, 60 sets of predictive models were established utilizing two variable screening methodologies (MLR and RF) and ten prominent algorithms. Through statistical parameter analysis, it was determined that descriptors combined with MD and MF, the RF screening method, and the symbolism algorithm exhibited the best predictive efficacy. Importantly, the combination of descriptor models exhibited significantly superior performance compared to individual MF and MD models. Notably, the optimal model, denoted as RF - (MF + MD) - LGB, exhibited highly satisfactory predictive results (R2tra = 0.967, Q2tra = 0.840, R2ext = 0.761). The mechanistic explanation study based on Shapley Additive Explanations (SHAP) values further elucidated the crucial influences of polarity, pH, molecular weight, electronegativity, carbon-carbon double bonds, and molecular topology on the degradation of OCs by eaq-. The proposed modeling approach, particularly the integration of MF and MD, alongside the introduction of pH, may furnish innovative ideas for advanced reduction or oxidation processes (ARPs/AOPs) and machine learning applications in other domains." @default.
- W4385830646 created "2023-08-16" @default.
- W4385830646 creator A5011469016 @default.
- W4385830646 creator A5031635201 @default.
- W4385830646 creator A5042305497 @default.
- W4385830646 creator A5044463556 @default.
- W4385830646 date "2023-12-01" @default.
- W4385830646 modified "2023-10-12" @default.
- W4385830646 title "A new perspective on predicting the reaction rate constants of hydrated electrons for organic contaminants: Exploring molecular structure characterization methods and ambient conditions" @default.
- W4385830646 cites W1926950498 @default.
- W4385830646 cites W1965928527 @default.
- W4385830646 cites W1971600558 @default.
- W4385830646 cites W1984360779 @default.
- W4385830646 cites W1991322515 @default.
- W4385830646 cites W1995517118 @default.
- W4385830646 cites W2003754134 @default.
- W4385830646 cites W2003864523 @default.
- W4385830646 cites W2007494003 @default.
- W4385830646 cites W2027169983 @default.
- W4385830646 cites W2054716083 @default.
- W4385830646 cites W2055383960 @default.
- W4385830646 cites W2061220714 @default.
- W4385830646 cites W2064631601 @default.
- W4385830646 cites W2067700690 @default.
- W4385830646 cites W2080652595 @default.
- W4385830646 cites W2083327829 @default.
- W4385830646 cites W2100582970 @default.
- W4385830646 cites W2103325975 @default.
- W4385830646 cites W2104936679 @default.
- W4385830646 cites W2267945123 @default.
- W4385830646 cites W2288810932 @default.
- W4385830646 cites W2314776058 @default.
- W4385830646 cites W2325176373 @default.
- W4385830646 cites W2336243697 @default.
- W4385830646 cites W2336775565 @default.
- W4385830646 cites W2398789413 @default.
- W4385830646 cites W2408642289 @default.
- W4385830646 cites W2460931610 @default.
- W4385830646 cites W2530233713 @default.
- W4385830646 cites W2612505960 @default.
- W4385830646 cites W2741452904 @default.
- W4385830646 cites W2747568932 @default.
- W4385830646 cites W2761800596 @default.
- W4385830646 cites W2770819053 @default.
- W4385830646 cites W2791713605 @default.
- W4385830646 cites W2793678041 @default.
- W4385830646 cites W2797932733 @default.
- W4385830646 cites W2893990647 @default.
- W4385830646 cites W2901204792 @default.
- W4385830646 cites W2922318955 @default.
- W4385830646 cites W2937307539 @default.
- W4385830646 cites W2966452029 @default.
- W4385830646 cites W2971445958 @default.
- W4385830646 cites W2972066617 @default.
- W4385830646 cites W2999497344 @default.
- W4385830646 cites W3033320299 @default.
- W4385830646 cites W3033990067 @default.
- W4385830646 cites W3034116563 @default.
- W4385830646 cites W3101856735 @default.
- W4385830646 cites W3107667543 @default.
- W4385830646 cites W3112575647 @default.
- W4385830646 cites W3113291402 @default.
- W4385830646 cites W3133886840 @default.
- W4385830646 cites W3167046405 @default.
- W4385830646 cites W3175110185 @default.
- W4385830646 cites W3186570958 @default.
- W4385830646 cites W3196726907 @default.
- W4385830646 cites W3198065895 @default.
- W4385830646 cites W4200192556 @default.
- W4385830646 cites W4200236333 @default.
- W4385830646 cites W4200391358 @default.
- W4385830646 cites W4210634244 @default.
- W4385830646 cites W4213228517 @default.
- W4385830646 cites W4220751823 @default.
- W4385830646 cites W4285390629 @default.
- W4385830646 cites W4295763226 @default.
- W4385830646 cites W4313547421 @default.
- W4385830646 doi "https://doi.org/10.1016/j.scitotenv.2023.166316" @default.
- W4385830646 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37591396" @default.
- W4385830646 hasPublicationYear "2023" @default.
- W4385830646 type Work @default.
- W4385830646 citedByCount "0" @default.
- W4385830646 crossrefType "journal-article" @default.
- W4385830646 hasAuthorship W4385830646A5011469016 @default.
- W4385830646 hasAuthorship W4385830646A5031635201 @default.
- W4385830646 hasAuthorship W4385830646A5042305497 @default.
- W4385830646 hasAuthorship W4385830646A5044463556 @default.
- W4385830646 hasConcept C121332964 @default.
- W4385830646 hasConcept C134306372 @default.
- W4385830646 hasConcept C148898269 @default.
- W4385830646 hasConcept C164126121 @default.
- W4385830646 hasConcept C164923092 @default.
- W4385830646 hasConcept C171250308 @default.
- W4385830646 hasConcept C177293861 @default.
- W4385830646 hasConcept C178790620 @default.
- W4385830646 hasConcept C182365436 @default.
- W4385830646 hasConcept C185592680 @default.
- W4385830646 hasConcept C186060115 @default.