Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385834073> ?p ?o ?g. }
- W4385834073 endingPage "89615" @default.
- W4385834073 startingPage "89591" @default.
- W4385834073 abstract "As we advance towards 6G communication systems, the number of network devices continues to increase resulting in spectrum scarcity. With the help of Spectrum Sensing (SS), Cognitive Radio (CR) exploits the frequency spectrum dynamically by detecting and transmitting in underutilized bands. The performance of 6G networks can be enhanced by utilizing Deep Neural Networks (DNNs) to perform SS. This paper provides a detailed survey of several Deep Learning (DL) algorithms used for SS by classifying them as Multilayer Perceptrons (MLPs), Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM) networks, combined CNN-LSTM architectures and Autoencoders (AEs). The works are discussed in terms of the input provided to the DL algorithm, data acquisition technique used, data pre-processing technique used, architecture of each algorithm, evaluation metrics used, results obtained, and comparison with standard SS detectors. This survey further provides an overview of traditional ML algorithms and simple Artificial Neural Networks (ANNs) while highlighting the drawbacks of conventional SS approaches for completeness. A description of some publicly available Radio Frequency (RF) datasets is included and the need for comprehensive RF datasets and Transfer Learning (TL) is discussed. Furthermore, the research challenges related to the use of DL for SS are highlighted along with potential solutions." @default.
- W4385834073 created "2023-08-16" @default.
- W4385834073 creator A5009244011 @default.
- W4385834073 creator A5017766812 @default.
- W4385834073 creator A5034031282 @default.
- W4385834073 creator A5061182866 @default.
- W4385834073 creator A5065790904 @default.
- W4385834073 creator A5074353965 @default.
- W4385834073 creator A5078409807 @default.
- W4385834073 creator A5090771677 @default.
- W4385834073 date "2023-01-01" @default.
- W4385834073 modified "2023-09-25" @default.
- W4385834073 title "Deep Neural Networks for Spectrum Sensing: A Review" @default.
- W4385834073 cites W1495524590 @default.
- W4385834073 cites W1878059963 @default.
- W4385834073 cites W1973979964 @default.
- W4385834073 cites W1986007546 @default.
- W4385834073 cites W1993573682 @default.
- W4385834073 cites W2004882194 @default.
- W4385834073 cites W2028070629 @default.
- W4385834073 cites W2031211320 @default.
- W4385834073 cites W2051755734 @default.
- W4385834073 cites W2054698853 @default.
- W4385834073 cites W2065424480 @default.
- W4385834073 cites W2065715415 @default.
- W4385834073 cites W2071707134 @default.
- W4385834073 cites W2078145916 @default.
- W4385834073 cites W2087795220 @default.
- W4385834073 cites W2092431085 @default.
- W4385834073 cites W2096529685 @default.
- W4385834073 cites W2097117768 @default.
- W4385834073 cites W2101734002 @default.
- W4385834073 cites W2101840010 @default.
- W4385834073 cites W2103586998 @default.
- W4385834073 cites W2108598243 @default.
- W4385834073 cites W2108950639 @default.
- W4385834073 cites W2110704086 @default.
- W4385834073 cites W2112796928 @default.
- W4385834073 cites W2119137700 @default.
- W4385834073 cites W2120031724 @default.
- W4385834073 cites W2136816673 @default.
- W4385834073 cites W2141915025 @default.
- W4385834073 cites W2146315101 @default.
- W4385834073 cites W2150397642 @default.
- W4385834073 cites W2150767133 @default.
- W4385834073 cites W2153885183 @default.
- W4385834073 cites W2157000663 @default.
- W4385834073 cites W2164701845 @default.
- W4385834073 cites W2165800172 @default.
- W4385834073 cites W2168078104 @default.
- W4385834073 cites W2168580816 @default.
- W4385834073 cites W2172139273 @default.
- W4385834073 cites W2194775991 @default.
- W4385834073 cites W2200649111 @default.
- W4385834073 cites W2272847350 @default.
- W4385834073 cites W2371757874 @default.
- W4385834073 cites W2520664327 @default.
- W4385834073 cites W2551956255 @default.
- W4385834073 cites W2572219278 @default.
- W4385834073 cites W2602067568 @default.
- W4385834073 cites W2606855749 @default.
- W4385834073 cites W2617356765 @default.
- W4385834073 cites W2734887215 @default.
- W4385834073 cites W2766522006 @default.
- W4385834073 cites W2773170971 @default.
- W4385834073 cites W2786168957 @default.
- W4385834073 cites W2789876780 @default.
- W4385834073 cites W2790009891 @default.
- W4385834073 cites W2809619574 @default.
- W4385834073 cites W2810541950 @default.
- W4385834073 cites W2884689635 @default.
- W4385834073 cites W2890998522 @default.
- W4385834073 cites W2907930484 @default.
- W4385834073 cites W2908993293 @default.
- W4385834073 cites W2922048928 @default.
- W4385834073 cites W2922112979 @default.
- W4385834073 cites W2944313727 @default.
- W4385834073 cites W2950321066 @default.
- W4385834073 cites W2963115134 @default.
- W4385834073 cites W2963163009 @default.
- W4385834073 cites W2963446712 @default.
- W4385834073 cites W2963809753 @default.
- W4385834073 cites W2966910701 @default.
- W4385834073 cites W2971778960 @default.
- W4385834073 cites W2972344074 @default.
- W4385834073 cites W2973209754 @default.
- W4385834073 cites W2976021085 @default.
- W4385834073 cites W3000666963 @default.
- W4385834073 cites W3010867338 @default.
- W4385834073 cites W3011894868 @default.
- W4385834073 cites W3011899668 @default.
- W4385834073 cites W3027109963 @default.
- W4385834073 cites W3035433808 @default.
- W4385834073 cites W3036981520 @default.
- W4385834073 cites W3045345489 @default.
- W4385834073 cites W3048317763 @default.
- W4385834073 cites W3119374906 @default.
- W4385834073 cites W3119982621 @default.