Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385835210> ?p ?o ?g. }
- W4385835210 endingPage "2137" @default.
- W4385835210 startingPage "2137" @default.
- W4385835210 abstract "Sunscald in kiwifruit, an environmental stress caused by solar radiation during the summer, reduces fruit quality and yields and causes economic losses. The efficient and timely detection of sunscald and similar diseases is a challenging task but helps to implement measures to control stress. This study provides high-precision detection models and relevant spectral information on kiwifruit physiology for similar statuses, including early-stage sunscald, late-stage sunscald, anthracnose, and healthy. Primarily, in the laboratory, 429 groups of spectral reflectance data for leaves of four statuses were collected and analyzed using a hyperspectral reflection acquisition system. Then, multiple modeling approaches, including combined preprocessing methods, feature extraction algorithms, and classification algorithms, were designed to extract bands and evaluate the performance of the models to detect the statuses of kiwifruit. Finally, the detection of different stages of kiwifruit sunscald under anthracnose interference was accomplished. As influential bands, 694–713 nm, 758–777 nm, 780–799 nm, and 1303–1322 nm were extracted. The overall accuracy, precision, recall, and F1-score values of the models reached 100%, demonstrating an ability to detect all statuses with 100% accuracy. It was concluded that the combined processing of moving average and standard normal variable transformations (MS) could significantly improve the data; the near-infrared support vector machine and visible convolutional neural network with MS (NIR-MS-SVM and VIS-MS-CNN) were established as high-precision detection techniques for the classification of similar kiwifruit statuses, demonstrating 25.58% higher accuracy than the single support vector machine. The VIS-MS-CNN model reached convergence with a stable cross-entropy loss of 0.75 in training and 0.77 in validation. The techniques developed in this study will improve orchard management efficiency and yields and increase researchers’ understanding of kiwifruit physiology." @default.
- W4385835210 created "2023-08-16" @default.
- W4385835210 creator A5021034942 @default.
- W4385835210 creator A5070900491 @default.
- W4385835210 creator A5075278487 @default.
- W4385835210 date "2023-08-15" @default.
- W4385835210 modified "2023-10-17" @default.
- W4385835210 title "The Detection of Kiwifruit Sunscald Using Spectral Reflectance Data Combined with Machine Learning and CNNs" @default.
- W4385835210 cites W2025757188 @default.
- W4385835210 cites W2056432274 @default.
- W4385835210 cites W2091376522 @default.
- W4385835210 cites W2113631068 @default.
- W4385835210 cites W2118791227 @default.
- W4385835210 cites W2134664389 @default.
- W4385835210 cites W2146354524 @default.
- W4385835210 cites W2170505850 @default.
- W4385835210 cites W2200387731 @default.
- W4385835210 cites W2332095603 @default.
- W4385835210 cites W2513429498 @default.
- W4385835210 cites W2546316902 @default.
- W4385835210 cites W2589586826 @default.
- W4385835210 cites W2597704325 @default.
- W4385835210 cites W2624736246 @default.
- W4385835210 cites W2625892824 @default.
- W4385835210 cites W2742666152 @default.
- W4385835210 cites W2758567761 @default.
- W4385835210 cites W2789255992 @default.
- W4385835210 cites W2803204740 @default.
- W4385835210 cites W2883051959 @default.
- W4385835210 cites W2911964244 @default.
- W4385835210 cites W2912855619 @default.
- W4385835210 cites W2945508380 @default.
- W4385835210 cites W2963653111 @default.
- W4385835210 cites W2966757765 @default.
- W4385835210 cites W2991429304 @default.
- W4385835210 cites W2995726119 @default.
- W4385835210 cites W3000393779 @default.
- W4385835210 cites W3033731332 @default.
- W4385835210 cites W3035130140 @default.
- W4385835210 cites W3037968153 @default.
- W4385835210 cites W3043565561 @default.
- W4385835210 cites W3086007433 @default.
- W4385835210 cites W3135982901 @default.
- W4385835210 cites W3148316247 @default.
- W4385835210 cites W3213896356 @default.
- W4385835210 cites W4206736393 @default.
- W4385835210 cites W4207021741 @default.
- W4385835210 cites W4210950978 @default.
- W4385835210 cites W4224293588 @default.
- W4385835210 cites W4224299147 @default.
- W4385835210 cites W4281692349 @default.
- W4385835210 cites W4281752997 @default.
- W4385835210 cites W4297268543 @default.
- W4385835210 cites W4308446424 @default.
- W4385835210 cites W4312083856 @default.
- W4385835210 cites W4312275265 @default.
- W4385835210 cites W4313327070 @default.
- W4385835210 cites W4313418700 @default.
- W4385835210 cites W4313574525 @default.
- W4385835210 cites W4313581143 @default.
- W4385835210 cites W4316468811 @default.
- W4385835210 cites W4317425876 @default.
- W4385835210 cites W4327755237 @default.
- W4385835210 cites W4377291824 @default.
- W4385835210 cites W4379471664 @default.
- W4385835210 cites W4380992178 @default.
- W4385835210 cites W4382468640 @default.
- W4385835210 doi "https://doi.org/10.3390/agronomy13082137" @default.
- W4385835210 hasPublicationYear "2023" @default.
- W4385835210 type Work @default.
- W4385835210 citedByCount "0" @default.
- W4385835210 crossrefType "journal-article" @default.
- W4385835210 hasAuthorship W4385835210A5021034942 @default.
- W4385835210 hasAuthorship W4385835210A5070900491 @default.
- W4385835210 hasAuthorship W4385835210A5075278487 @default.
- W4385835210 hasBestOaLocation W43858352101 @default.
- W4385835210 hasConcept C12267149 @default.
- W4385835210 hasConcept C153180895 @default.
- W4385835210 hasConcept C154945302 @default.
- W4385835210 hasConcept C159078339 @default.
- W4385835210 hasConcept C2780737950 @default.
- W4385835210 hasConcept C34736171 @default.
- W4385835210 hasConcept C41008148 @default.
- W4385835210 hasConcept C59822182 @default.
- W4385835210 hasConcept C81363708 @default.
- W4385835210 hasConcept C86803240 @default.
- W4385835210 hasConceptScore W4385835210C12267149 @default.
- W4385835210 hasConceptScore W4385835210C153180895 @default.
- W4385835210 hasConceptScore W4385835210C154945302 @default.
- W4385835210 hasConceptScore W4385835210C159078339 @default.
- W4385835210 hasConceptScore W4385835210C2780737950 @default.
- W4385835210 hasConceptScore W4385835210C34736171 @default.
- W4385835210 hasConceptScore W4385835210C41008148 @default.
- W4385835210 hasConceptScore W4385835210C59822182 @default.
- W4385835210 hasConceptScore W4385835210C81363708 @default.
- W4385835210 hasConceptScore W4385835210C86803240 @default.
- W4385835210 hasFunder F4320309870 @default.
- W4385835210 hasIssue "8" @default.