Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385839029> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W4385839029 abstract "<strong class=journal-contentHeaderColor>Abstract.</strong> Accurate information on surface soil moisture (SSM) content at a global scale under different climatic conditions is important for hydrological and climatological applications. Machine learning (ML) based systematic integration of in-situ hydrological measurements, complex environmental and climate data and satellite observation facilitate to generate the best data products to monitor and analyse the exchanges of water, energy and carbon in the Earth system at a proper space-time resolution. This study investigates the estimation of daily SSM using eight optimised ML algorithms and ten ensemble models (constructed via model bootstrap aggregating techniques and five-fold cross-validation). The algorithmic implementations were trained and tested using the international soil moisture network (ISMN) data collected from 1722 stations distributed across the World. The result showed that K-neighbours Regressor (KNR) performs best on “test_random” set, while Random Forest Regressor (RFR) performs best on “test_temporal” and “test_independent-stations”. Independent evaluation on novel stations across different climate zones was conducted. For the optimised ML algorithms, the median RMSEs were below 0.1 cm3/cm3. GradientBoosting (GB), Multi-layer Perceptron Regressor (MLPR), Stochastic Gradient Descent Regressor (SGDR), and Random Forest Regressor (RFR) achieved a median r score of 0.6 in twelve, eleven, nine and nine climate zones, respectively, out of fifteen climate zones. The performance of ensemble models improved significantly with the median value of RMSE below 0.075 cm3/cm3 for all climate zones . All voting regressors achieved the r scores of above 0.6 in thirteen climate zones except BSh and BWh because of the sparse distribution of training stations. The metrical evaluation showed that ensemble models can improve the performance of single ML algorithms and achieve more stable results. Based on the results computed for three different test sets, the ensemble model with KNR, RFR and XB performed the best. Overall, our investigation shows that ensemble machine learning algorithms have a greater capability for predicting SSM compared to the optimised, or base ML algorithms, and indicates their huge potential applicability in estimating water cycle budgets, managing irrigation and predicting crop yields." @default.
- W4385839029 created "2023-08-16" @default.
- W4385839029 creator A5068082157 @default.
- W4385839029 date "2023-08-15" @default.
- W4385839029 modified "2023-10-02" @default.
- W4385839029 title "Reply on AC2" @default.
- W4385839029 doi "https://doi.org/10.5194/gmd-2023-83-ac4" @default.
- W4385839029 hasPublicationYear "2023" @default.
- W4385839029 type Work @default.
- W4385839029 citedByCount "0" @default.
- W4385839029 crossrefType "peer-review" @default.
- W4385839029 hasAuthorship W4385839029A5068082157 @default.
- W4385839029 hasBestOaLocation W43858390291 @default.
- W4385839029 hasConcept C111368507 @default.
- W4385839029 hasConcept C11413529 @default.
- W4385839029 hasConcept C119857082 @default.
- W4385839029 hasConcept C127313418 @default.
- W4385839029 hasConcept C132651083 @default.
- W4385839029 hasConcept C153294291 @default.
- W4385839029 hasConcept C154945302 @default.
- W4385839029 hasConcept C168754636 @default.
- W4385839029 hasConcept C169258074 @default.
- W4385839029 hasConcept C205649164 @default.
- W4385839029 hasConcept C2778755073 @default.
- W4385839029 hasConcept C39432304 @default.
- W4385839029 hasConcept C41008148 @default.
- W4385839029 hasConcept C50644808 @default.
- W4385839029 hasConcept C58489278 @default.
- W4385839029 hasConcept C58640448 @default.
- W4385839029 hasConcept C60908668 @default.
- W4385839029 hasConceptScore W4385839029C111368507 @default.
- W4385839029 hasConceptScore W4385839029C11413529 @default.
- W4385839029 hasConceptScore W4385839029C119857082 @default.
- W4385839029 hasConceptScore W4385839029C127313418 @default.
- W4385839029 hasConceptScore W4385839029C132651083 @default.
- W4385839029 hasConceptScore W4385839029C153294291 @default.
- W4385839029 hasConceptScore W4385839029C154945302 @default.
- W4385839029 hasConceptScore W4385839029C168754636 @default.
- W4385839029 hasConceptScore W4385839029C169258074 @default.
- W4385839029 hasConceptScore W4385839029C205649164 @default.
- W4385839029 hasConceptScore W4385839029C2778755073 @default.
- W4385839029 hasConceptScore W4385839029C39432304 @default.
- W4385839029 hasConceptScore W4385839029C41008148 @default.
- W4385839029 hasConceptScore W4385839029C50644808 @default.
- W4385839029 hasConceptScore W4385839029C58489278 @default.
- W4385839029 hasConceptScore W4385839029C58640448 @default.
- W4385839029 hasConceptScore W4385839029C60908668 @default.
- W4385839029 hasLocation W43858390291 @default.
- W4385839029 hasOpenAccess W4385839029 @default.
- W4385839029 hasPrimaryLocation W43858390291 @default.
- W4385839029 hasRelatedWork W1806772866 @default.
- W4385839029 hasRelatedWork W1974349263 @default.
- W4385839029 hasRelatedWork W2024872466 @default.
- W4385839029 hasRelatedWork W2071809672 @default.
- W4385839029 hasRelatedWork W2525064831 @default.
- W4385839029 hasRelatedWork W2600618515 @default.
- W4385839029 hasRelatedWork W2617947713 @default.
- W4385839029 hasRelatedWork W2748952813 @default.
- W4385839029 hasRelatedWork W2899084033 @default.
- W4385839029 hasRelatedWork W3208854956 @default.
- W4385839029 isParatext "false" @default.
- W4385839029 isRetracted "false" @default.
- W4385839029 workType "peer-review" @default.