Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385841197> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4385841197 endingPage "128767" @default.
- W4385841197 startingPage "128767" @default.
- W4385841197 abstract "Due to the importance of the main controlling factors for oil and gas field development, numerical simulation methods, physical experimental methods and other methods have been used to study the problem. However, it is difficult to find the main controlling factors of a certain type of gas field using these methods. Therefore, a two-fold three-network model is proposed to solve the difficulties by coupling dynamic production data and static geological engineering data in this paper. First fold is consisted of 1D convolution network and Long Short-Term Memory neural network (LSTM), can perform good feature extraction and learn long time sequence dependence for dynamic production sequence data. Second fold made of BP neural network, is mainly dealing with static geological engineering data. By combining the two folds, the model can couple dynamic production data and static geological engineering data at the same time. Finally, the Garson feature selection are used to obtain the main controlling factors of gas field recovery rate based on trained network model. The experimentally obtained trained model can fit the recovery rate of gas field well. This shows that the proposed method can effectively discover the main controlling factors for gas field for different types, which has wide application for gas development." @default.
- W4385841197 created "2023-08-16" @default.
- W4385841197 creator A5006575032 @default.
- W4385841197 creator A5027459729 @default.
- W4385841197 creator A5030025128 @default.
- W4385841197 creator A5041653959 @default.
- W4385841197 creator A5065002994 @default.
- W4385841197 date "2023-12-01" @default.
- W4385841197 modified "2023-10-17" @default.
- W4385841197 title "Deep learning-based analysis of the main controlling factors of different gas-fields recovery rate" @default.
- W4385841197 cites W1964676548 @default.
- W4385841197 cites W2001682773 @default.
- W4385841197 cites W2012334380 @default.
- W4385841197 cites W2015092415 @default.
- W4385841197 cites W2017670056 @default.
- W4385841197 cites W2035890032 @default.
- W4385841197 cites W2109634408 @default.
- W4385841197 cites W2167382751 @default.
- W4385841197 cites W2885195348 @default.
- W4385841197 cites W2904078614 @default.
- W4385841197 cites W2913865035 @default.
- W4385841197 cites W2933486517 @default.
- W4385841197 cites W2940914091 @default.
- W4385841197 cites W2944851425 @default.
- W4385841197 cites W2952241480 @default.
- W4385841197 cites W3026074316 @default.
- W4385841197 cites W3118625182 @default.
- W4385841197 cites W3129880033 @default.
- W4385841197 cites W3152880454 @default.
- W4385841197 cites W3169736013 @default.
- W4385841197 cites W3173858372 @default.
- W4385841197 cites W4200310034 @default.
- W4385841197 cites W4220753710 @default.
- W4385841197 cites W4220915431 @default.
- W4385841197 cites W4281556681 @default.
- W4385841197 cites W4281922989 @default.
- W4385841197 cites W4303649171 @default.
- W4385841197 cites W4315929016 @default.
- W4385841197 cites W4317816547 @default.
- W4385841197 cites W4318825979 @default.
- W4385841197 cites W4323526856 @default.
- W4385841197 doi "https://doi.org/10.1016/j.energy.2023.128767" @default.
- W4385841197 hasPublicationYear "2023" @default.
- W4385841197 type Work @default.
- W4385841197 citedByCount "0" @default.
- W4385841197 crossrefType "journal-article" @default.
- W4385841197 hasAuthorship W4385841197A5006575032 @default.
- W4385841197 hasAuthorship W4385841197A5027459729 @default.
- W4385841197 hasAuthorship W4385841197A5030025128 @default.
- W4385841197 hasAuthorship W4385841197A5041653959 @default.
- W4385841197 hasAuthorship W4385841197A5065002994 @default.
- W4385841197 hasConcept C124101348 @default.
- W4385841197 hasConcept C154945302 @default.
- W4385841197 hasConcept C197298091 @default.
- W4385841197 hasConcept C199360897 @default.
- W4385841197 hasConcept C202444582 @default.
- W4385841197 hasConcept C33923547 @default.
- W4385841197 hasConcept C41008148 @default.
- W4385841197 hasConcept C45347329 @default.
- W4385841197 hasConcept C50644808 @default.
- W4385841197 hasConcept C9652623 @default.
- W4385841197 hasConceptScore W4385841197C124101348 @default.
- W4385841197 hasConceptScore W4385841197C154945302 @default.
- W4385841197 hasConceptScore W4385841197C197298091 @default.
- W4385841197 hasConceptScore W4385841197C199360897 @default.
- W4385841197 hasConceptScore W4385841197C202444582 @default.
- W4385841197 hasConceptScore W4385841197C33923547 @default.
- W4385841197 hasConceptScore W4385841197C41008148 @default.
- W4385841197 hasConceptScore W4385841197C45347329 @default.
- W4385841197 hasConceptScore W4385841197C50644808 @default.
- W4385841197 hasConceptScore W4385841197C9652623 @default.
- W4385841197 hasFunder F4320321001 @default.
- W4385841197 hasLocation W43858411971 @default.
- W4385841197 hasOpenAccess W4385841197 @default.
- W4385841197 hasPrimaryLocation W43858411971 @default.
- W4385841197 hasRelatedWork W1968092302 @default.
- W4385841197 hasRelatedWork W1984922432 @default.
- W4385841197 hasRelatedWork W2001594935 @default.
- W4385841197 hasRelatedWork W2182785089 @default.
- W4385841197 hasRelatedWork W2362198218 @default.
- W4385841197 hasRelatedWork W2364715216 @default.
- W4385841197 hasRelatedWork W2391251536 @default.
- W4385841197 hasRelatedWork W2518702994 @default.
- W4385841197 hasRelatedWork W2888412392 @default.
- W4385841197 hasRelatedWork W4312178642 @default.
- W4385841197 hasVolume "285" @default.
- W4385841197 isParatext "false" @default.
- W4385841197 isRetracted "false" @default.
- W4385841197 workType "article" @default.