Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385844849> ?p ?o ?g. }
- W4385844849 endingPage "5648" @default.
- W4385844849 startingPage "5632" @default.
- W4385844849 abstract "<abstract><p>With the increasing need for public health and drug development, combination therapy has become widely used in clinical settings. However, the risk of unanticipated adverse effects and unknown toxicity caused by drug-drug interactions (DDIs) is a serious public health issue for polypharmacy safety. Traditional experimental methods for detecting DDIs are expensive and time-consuming. Therefore, many computational methods have been developed in recent years to predict DDIs with the growing availability of data and advancements in artificial intelligence. In silico methods have proven to be effective in predicting DDIs, but detecting potential interactions, especially for newly discovered drugs without an existing DDI network, remains a challenge. In this study, we propose a predicting method of DDIs named HAG-DDI based on graph attention networks. We consider the differences in mechanisms between DDIs and add learning of semantic-level attention, which can focus on advanced representations of DDIs. By treating interactions as nodes and the presence of the same drug as edges, and constructing small subnetworks during training, we effectively mitigate potential bias issues arising from limited data availability. Our experimental results show that our method achieves an F1-score of 0.952, proving that our model is a viable alternative for DDIs prediction. The codes are available at: <ext-link ext-link-type=uri xmlns:xlink=http://www.w3.org/1999/xlink xlink:href=https://github.com/xtnenu/DDIFramework>https://github.com/xtnenu/DDIFramework</ext-link>.</p></abstract>" @default.
- W4385844849 created "2023-08-16" @default.
- W4385844849 creator A5006540007 @default.
- W4385844849 creator A5009728168 @default.
- W4385844849 creator A5017318126 @default.
- W4385844849 creator A5018032174 @default.
- W4385844849 creator A5031397616 @default.
- W4385844849 creator A5038788906 @default.
- W4385844849 creator A5059804886 @default.
- W4385844849 date "2023-01-01" @default.
- W4385844849 modified "2023-09-23" @default.
- W4385844849 title "A novel drug-drug interactions prediction method based on a graph attention network" @default.
- W4385844849 cites W1967555951 @default.
- W4385844849 cites W2024985940 @default.
- W4385844849 cites W2035410307 @default.
- W4385844849 cites W2067704478 @default.
- W4385844849 cites W2093737637 @default.
- W4385844849 cites W2116341502 @default.
- W4385844849 cites W2118415328 @default.
- W4385844849 cites W2119002393 @default.
- W4385844849 cites W2310115806 @default.
- W4385844849 cites W2320155933 @default.
- W4385844849 cites W2393319904 @default.
- W4385844849 cites W2473876819 @default.
- W4385844849 cites W2485374661 @default.
- W4385844849 cites W2755814313 @default.
- W4385844849 cites W2772102631 @default.
- W4385844849 cites W2775687305 @default.
- W4385844849 cites W2794284995 @default.
- W4385844849 cites W2799720196 @default.
- W4385844849 cites W2802200505 @default.
- W4385844849 cites W2910124299 @default.
- W4385844849 cites W2911286998 @default.
- W4385844849 cites W2913067913 @default.
- W4385844849 cites W2914823953 @default.
- W4385844849 cites W2946751505 @default.
- W4385844849 cites W2972392269 @default.
- W4385844849 cites W2974658886 @default.
- W4385844849 cites W3011157241 @default.
- W4385844849 cites W3024894285 @default.
- W4385844849 cites W3097145107 @default.
- W4385844849 cites W3097317220 @default.
- W4385844849 cites W3104097132 @default.
- W4385844849 cites W3105705953 @default.
- W4385844849 cites W3139253280 @default.
- W4385844849 cites W3157889929 @default.
- W4385844849 cites W3160363665 @default.
- W4385844849 cites W4200227922 @default.
- W4385844849 cites W4229369522 @default.
- W4385844849 cites W4232496535 @default.
- W4385844849 cites W4247762502 @default.
- W4385844849 doi "https://doi.org/10.3934/era.2023286" @default.
- W4385844849 hasPublicationYear "2023" @default.
- W4385844849 type Work @default.
- W4385844849 citedByCount "0" @default.
- W4385844849 crossrefType "journal-article" @default.
- W4385844849 hasAuthorship W4385844849A5006540007 @default.
- W4385844849 hasAuthorship W4385844849A5009728168 @default.
- W4385844849 hasAuthorship W4385844849A5017318126 @default.
- W4385844849 hasAuthorship W4385844849A5018032174 @default.
- W4385844849 hasAuthorship W4385844849A5031397616 @default.
- W4385844849 hasAuthorship W4385844849A5038788906 @default.
- W4385844849 hasAuthorship W4385844849A5059804886 @default.
- W4385844849 hasBestOaLocation W43858448491 @default.
- W4385844849 hasConcept C119857082 @default.
- W4385844849 hasConcept C132525143 @default.
- W4385844849 hasConcept C154945302 @default.
- W4385844849 hasConcept C2780035454 @default.
- W4385844849 hasConcept C2989108626 @default.
- W4385844849 hasConcept C2993807640 @default.
- W4385844849 hasConcept C36434225 @default.
- W4385844849 hasConcept C41008148 @default.
- W4385844849 hasConcept C71924100 @default.
- W4385844849 hasConcept C80444323 @default.
- W4385844849 hasConcept C98274493 @default.
- W4385844849 hasConceptScore W4385844849C119857082 @default.
- W4385844849 hasConceptScore W4385844849C132525143 @default.
- W4385844849 hasConceptScore W4385844849C154945302 @default.
- W4385844849 hasConceptScore W4385844849C2780035454 @default.
- W4385844849 hasConceptScore W4385844849C2989108626 @default.
- W4385844849 hasConceptScore W4385844849C2993807640 @default.
- W4385844849 hasConceptScore W4385844849C36434225 @default.
- W4385844849 hasConceptScore W4385844849C41008148 @default.
- W4385844849 hasConceptScore W4385844849C71924100 @default.
- W4385844849 hasConceptScore W4385844849C80444323 @default.
- W4385844849 hasConceptScore W4385844849C98274493 @default.
- W4385844849 hasIssue "9" @default.
- W4385844849 hasLocation W43858448491 @default.
- W4385844849 hasOpenAccess W4385844849 @default.
- W4385844849 hasPrimaryLocation W43858448491 @default.
- W4385844849 hasRelatedWork W1981210093 @default.
- W4385844849 hasRelatedWork W2326690882 @default.
- W4385844849 hasRelatedWork W2961085424 @default.
- W4385844849 hasRelatedWork W3013442563 @default.
- W4385844849 hasRelatedWork W3028947197 @default.
- W4385844849 hasRelatedWork W3092029769 @default.
- W4385844849 hasRelatedWork W3211865291 @default.
- W4385844849 hasRelatedWork W4306674287 @default.