Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385849356> ?p ?o ?g. }
Showing items 1 to 57 of
57
with 100 items per page.
- W4385849356 abstract "We consider the problem of classifying gradings by groups on a finite-dimensional algebra $A$ (with any number of multilinear operations) over an algebraically closed field. We introduce a class of gradings, which we call almost fine, such that every $G$-grading on $A$ is obtained from an almost fine grading on $A$ in an essentially unique way, which is not the case with fine gradings. For abelian groups, we give a method of obtaining all almost fine gradings if fine gradings are known. We apply these ideas to the case of semisimple Lie algebras in characteristic $0$: to any abelian group grading with nonzero identity component, we attach a (possibly nonreduced) root system and, in the simple case, construct an adapted grading by this root system." @default.
- W4385849356 created "2023-08-16" @default.
- W4385849356 creator A5059871238 @default.
- W4385849356 creator A5060109576 @default.
- W4385849356 date "2023-08-14" @default.
- W4385849356 modified "2023-10-16" @default.
- W4385849356 title "Almost fine gradings on algebras and classification of gradings up to isomorphism" @default.
- W4385849356 doi "https://doi.org/10.48550/arxiv.2308.07230" @default.
- W4385849356 hasPublicationYear "2023" @default.
- W4385849356 type Work @default.
- W4385849356 citedByCount "0" @default.
- W4385849356 crossrefType "posted-content" @default.
- W4385849356 hasAuthorship W4385849356A5059871238 @default.
- W4385849356 hasAuthorship W4385849356A5060109576 @default.
- W4385849356 hasBestOaLocation W43858493561 @default.
- W4385849356 hasConcept C115624301 @default.
- W4385849356 hasConcept C127413603 @default.
- W4385849356 hasConcept C136119220 @default.
- W4385849356 hasConcept C136170076 @default.
- W4385849356 hasConcept C147176958 @default.
- W4385849356 hasConcept C185592680 @default.
- W4385849356 hasConcept C202444582 @default.
- W4385849356 hasConcept C203436722 @default.
- W4385849356 hasConcept C203701370 @default.
- W4385849356 hasConcept C2777286243 @default.
- W4385849356 hasConcept C33923547 @default.
- W4385849356 hasConcept C8010536 @default.
- W4385849356 hasConcept C84392682 @default.
- W4385849356 hasConceptScore W4385849356C115624301 @default.
- W4385849356 hasConceptScore W4385849356C127413603 @default.
- W4385849356 hasConceptScore W4385849356C136119220 @default.
- W4385849356 hasConceptScore W4385849356C136170076 @default.
- W4385849356 hasConceptScore W4385849356C147176958 @default.
- W4385849356 hasConceptScore W4385849356C185592680 @default.
- W4385849356 hasConceptScore W4385849356C202444582 @default.
- W4385849356 hasConceptScore W4385849356C203436722 @default.
- W4385849356 hasConceptScore W4385849356C203701370 @default.
- W4385849356 hasConceptScore W4385849356C2777286243 @default.
- W4385849356 hasConceptScore W4385849356C33923547 @default.
- W4385849356 hasConceptScore W4385849356C8010536 @default.
- W4385849356 hasConceptScore W4385849356C84392682 @default.
- W4385849356 hasLocation W43858493561 @default.
- W4385849356 hasOpenAccess W4385849356 @default.
- W4385849356 hasPrimaryLocation W43858493561 @default.
- W4385849356 hasRelatedWork W1562041956 @default.
- W4385849356 hasRelatedWork W1821847917 @default.
- W4385849356 hasRelatedWork W1927071250 @default.
- W4385849356 hasRelatedWork W1996580892 @default.
- W4385849356 hasRelatedWork W2006990530 @default.
- W4385849356 hasRelatedWork W2439115288 @default.
- W4385849356 hasRelatedWork W2565077047 @default.
- W4385849356 hasRelatedWork W3102075949 @default.
- W4385849356 hasRelatedWork W3109111491 @default.
- W4385849356 hasRelatedWork W3126773016 @default.
- W4385849356 isParatext "false" @default.
- W4385849356 isRetracted "false" @default.
- W4385849356 workType "article" @default.