Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385863829> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W4385863829 abstract "Sentimental analysis is a crucial step in natural language processing that aids in figuring out whether a text has a positive, negative, or neutral sentiment. In this experiment, we analyzed the sentiments expressed in tweets that included text, emojis, and emoticons. To categorize the tweets into different sentiments, we utilized four different algorithms: Multinomial Naive Bayes (MNB),Random Forest, Support Vector Machine (SVM) and Decision Tree. In order to increase the model's accuracy, we also combined the predictions from the four algorithms using the Voting Classifier, an ensemble learning technique. To preprocess the data, we used various techniques, such as removing stop words, stemming, and converting emojis and emoticons to their corresponding text representations. The performance of each algorithm was then trained on the preprocessed data using various assessment measures, including accuracy, precision, F1-score and recall. The SVM method fared better than the other algorithms, obtaining an accuracy of 96.27%, according to the data. Furthermore, we applied ensemble learning techniques, such as bagging to improve the performance of all the four algorithms. We also used the Voting Classifier to combine the predictions of the bagging models to further improve the accuracy of the model. The results revealed that the accuracy was increased to 97.21% by combining the bagging and voting classifiers. Overall, the project demonstrates the effectiveness of various algorithms and ensemble learning methods in performing sentimental analysis on tweets containing text, emojis, and emoticons." @default.
- W4385863829 created "2023-08-17" @default.
- W4385863829 creator A5006789220 @default.
- W4385863829 creator A5092647255 @default.
- W4385863829 creator A5092647256 @default.
- W4385863829 date "2023-07-19" @default.
- W4385863829 modified "2023-10-17" @default.
- W4385863829 title "Machine Learning for Sentiment Analysis Utilizing Social Media" @default.
- W4385863829 cites W2025478229 @default.
- W4385863829 cites W2610136582 @default.
- W4385863829 cites W2735459586 @default.
- W4385863829 cites W2901469510 @default.
- W4385863829 cites W3019027838 @default.
- W4385863829 cites W3201830989 @default.
- W4385863829 cites W4210986446 @default.
- W4385863829 cites W4212987749 @default.
- W4385863829 cites W4226345864 @default.
- W4385863829 cites W4288767723 @default.
- W4385863829 cites W4291700802 @default.
- W4385863829 cites W4316658954 @default.
- W4385863829 cites W4327782898 @default.
- W4385863829 cites W2954406782 @default.
- W4385863829 doi "https://doi.org/10.1109/icecaa58104.2023.10212135" @default.
- W4385863829 hasPublicationYear "2023" @default.
- W4385863829 type Work @default.
- W4385863829 citedByCount "0" @default.
- W4385863829 crossrefType "proceedings-article" @default.
- W4385863829 hasAuthorship W4385863829A5006789220 @default.
- W4385863829 hasAuthorship W4385863829A5092647255 @default.
- W4385863829 hasAuthorship W4385863829A5092647256 @default.
- W4385863829 hasConcept C119857082 @default.
- W4385863829 hasConcept C12267149 @default.
- W4385863829 hasConcept C153668964 @default.
- W4385863829 hasConcept C154945302 @default.
- W4385863829 hasConcept C169258074 @default.
- W4385863829 hasConcept C17744445 @default.
- W4385863829 hasConcept C199539241 @default.
- W4385863829 hasConcept C204321447 @default.
- W4385863829 hasConcept C41008148 @default.
- W4385863829 hasConcept C45942800 @default.
- W4385863829 hasConcept C52001869 @default.
- W4385863829 hasConcept C520049643 @default.
- W4385863829 hasConcept C66402592 @default.
- W4385863829 hasConcept C84525736 @default.
- W4385863829 hasConcept C94625758 @default.
- W4385863829 hasConcept C95623464 @default.
- W4385863829 hasConceptScore W4385863829C119857082 @default.
- W4385863829 hasConceptScore W4385863829C12267149 @default.
- W4385863829 hasConceptScore W4385863829C153668964 @default.
- W4385863829 hasConceptScore W4385863829C154945302 @default.
- W4385863829 hasConceptScore W4385863829C169258074 @default.
- W4385863829 hasConceptScore W4385863829C17744445 @default.
- W4385863829 hasConceptScore W4385863829C199539241 @default.
- W4385863829 hasConceptScore W4385863829C204321447 @default.
- W4385863829 hasConceptScore W4385863829C41008148 @default.
- W4385863829 hasConceptScore W4385863829C45942800 @default.
- W4385863829 hasConceptScore W4385863829C52001869 @default.
- W4385863829 hasConceptScore W4385863829C520049643 @default.
- W4385863829 hasConceptScore W4385863829C66402592 @default.
- W4385863829 hasConceptScore W4385863829C84525736 @default.
- W4385863829 hasConceptScore W4385863829C94625758 @default.
- W4385863829 hasConceptScore W4385863829C95623464 @default.
- W4385863829 hasLocation W43858638291 @default.
- W4385863829 hasOpenAccess W4385863829 @default.
- W4385863829 hasPrimaryLocation W43858638291 @default.
- W4385863829 hasRelatedWork W2394323384 @default.
- W4385863829 hasRelatedWork W2771255398 @default.
- W4385863829 hasRelatedWork W2930428186 @default.
- W4385863829 hasRelatedWork W2966195860 @default.
- W4385863829 hasRelatedWork W3120363735 @default.
- W4385863829 hasRelatedWork W3125536479 @default.
- W4385863829 hasRelatedWork W3200027047 @default.
- W4385863829 hasRelatedWork W4214820172 @default.
- W4385863829 hasRelatedWork W4385770464 @default.
- W4385863829 hasRelatedWork W4386984454 @default.
- W4385863829 isParatext "false" @default.
- W4385863829 isRetracted "false" @default.
- W4385863829 workType "article" @default.