Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385863960> ?p ?o ?g. }
- W4385863960 abstract "Medical image segmentation is a vital task in medical imaging, aiming to extract meaningful and precise information from images. While traditional methods have been extensively used, they often suffer from drawbacks like poor accuracy and robustness. In contrast, deep learning methods, with their promising results in various applications, including medical image segmentation, are compared in this literature review. The review highlights the strengths and limitations of both approaches, providing insights into the current state-of-the- art techniques. Ultimately, it concludes that deep learning methods have demonstrated superior performance in medical image segmentation and are anticipated to make a significant impact in this field." @default.
- W4385863960 created "2023-08-17" @default.
- W4385863960 creator A5000835810 @default.
- W4385863960 creator A5011076860 @default.
- W4385863960 creator A5017426090 @default.
- W4385863960 creator A5017692221 @default.
- W4385863960 creator A5049144698 @default.
- W4385863960 creator A5092647335 @default.
- W4385863960 date "2023-08-05" @default.
- W4385863960 modified "2023-10-17" @default.
- W4385863960 title "Comparative Review on Traditional and Deep Learning Methods for Medical Image Segmentation" @default.
- W4385863960 cites W1156767201 @default.
- W4385863960 cites W1998070036 @default.
- W4385863960 cites W1998259955 @default.
- W4385863960 cites W2010115471 @default.
- W4385863960 cites W2012231760 @default.
- W4385863960 cites W2018593404 @default.
- W4385863960 cites W2038218396 @default.
- W4385863960 cites W2046890031 @default.
- W4385863960 cites W2229331245 @default.
- W4385863960 cites W2235797036 @default.
- W4385863960 cites W2316621800 @default.
- W4385863960 cites W2337898231 @default.
- W4385863960 cites W2508032853 @default.
- W4385863960 cites W2515602771 @default.
- W4385863960 cites W2586834759 @default.
- W4385863960 cites W2590099728 @default.
- W4385863960 cites W2595922842 @default.
- W4385863960 cites W2606234828 @default.
- W4385863960 cites W2607196597 @default.
- W4385863960 cites W2765468958 @default.
- W4385863960 cites W2786158083 @default.
- W4385863960 cites W2792834173 @default.
- W4385863960 cites W2805346144 @default.
- W4385863960 cites W2886856931 @default.
- W4385863960 cites W2892629682 @default.
- W4385863960 cites W2947052202 @default.
- W4385863960 cites W2957571329 @default.
- W4385863960 cites W2962914239 @default.
- W4385863960 cites W2979824959 @default.
- W4385863960 cites W2980661348 @default.
- W4385863960 cites W3011743383 @default.
- W4385863960 cites W3021042228 @default.
- W4385863960 cites W3043515713 @default.
- W4385863960 cites W3087478532 @default.
- W4385863960 cites W3093474702 @default.
- W4385863960 cites W3142772534 @default.
- W4385863960 cites W3165031368 @default.
- W4385863960 cites W3168491317 @default.
- W4385863960 cites W3172516001 @default.
- W4385863960 cites W3210245627 @default.
- W4385863960 cites W4205457781 @default.
- W4385863960 cites W4206693420 @default.
- W4385863960 cites W4285733526 @default.
- W4385863960 cites W4296334467 @default.
- W4385863960 cites W4309006979 @default.
- W4385863960 cites W4311088269 @default.
- W4385863960 cites W4311496088 @default.
- W4385863960 cites W4313582815 @default.
- W4385863960 cites W4316021039 @default.
- W4385863960 cites W4317639923 @default.
- W4385863960 cites W4320040760 @default.
- W4385863960 cites W4321615196 @default.
- W4385863960 cites W4322495747 @default.
- W4385863960 cites W4323566130 @default.
- W4385863960 cites W4323767232 @default.
- W4385863960 cites W4327531668 @default.
- W4385863960 doi "https://doi.org/10.1109/icsgrc57744.2023.10215402" @default.
- W4385863960 hasPublicationYear "2023" @default.
- W4385863960 type Work @default.
- W4385863960 citedByCount "0" @default.
- W4385863960 crossrefType "proceedings-article" @default.
- W4385863960 hasAuthorship W4385863960A5000835810 @default.
- W4385863960 hasAuthorship W4385863960A5011076860 @default.
- W4385863960 hasAuthorship W4385863960A5017426090 @default.
- W4385863960 hasAuthorship W4385863960A5017692221 @default.
- W4385863960 hasAuthorship W4385863960A5049144698 @default.
- W4385863960 hasAuthorship W4385863960A5092647335 @default.
- W4385863960 hasConcept C104317684 @default.
- W4385863960 hasConcept C108583219 @default.
- W4385863960 hasConcept C119857082 @default.
- W4385863960 hasConcept C124504099 @default.
- W4385863960 hasConcept C154945302 @default.
- W4385863960 hasConcept C185592680 @default.
- W4385863960 hasConcept C202444582 @default.
- W4385863960 hasConcept C31601959 @default.
- W4385863960 hasConcept C31972630 @default.
- W4385863960 hasConcept C33923547 @default.
- W4385863960 hasConcept C41008148 @default.
- W4385863960 hasConcept C55493867 @default.
- W4385863960 hasConcept C63479239 @default.
- W4385863960 hasConcept C89600930 @default.
- W4385863960 hasConcept C9652623 @default.
- W4385863960 hasConceptScore W4385863960C104317684 @default.
- W4385863960 hasConceptScore W4385863960C108583219 @default.
- W4385863960 hasConceptScore W4385863960C119857082 @default.
- W4385863960 hasConceptScore W4385863960C124504099 @default.
- W4385863960 hasConceptScore W4385863960C154945302 @default.
- W4385863960 hasConceptScore W4385863960C185592680 @default.
- W4385863960 hasConceptScore W4385863960C202444582 @default.