Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385871990> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W4385871990 abstract "Botnet attacks are a major concern for IoT devices, but using deep learning (DL) to identify them requires significant memory space and network traffic, making it difficult to implement on devices with limited memory. One can use dimensionality reduction methods to decrease the number of features in IoT network traffic data. The Bot-IoT dataset is a dataset that is accessible to the public, and it can be utilized to identify botnet attacks in IoT networks., with millions of samples of botnet attack traffic classified into DDoS, DoS, reconnaissance, and information theft scenarios. Dimensionality reduction techniques like principal component analysis (PCA) and autoencoder can help reduce the feature dimensionality of the dataset. Autoencoder, an unsupervised deep learning technique generates a hidden layer's latent-space representation of the input data. The reduced feature set can be used by deep learning algorithms like Long Short Term Memory (LSTM) and Convolutional Neural Network (CNN) to detect botnet attacks. Performance measurements like accuracy, precision, recall, and confusion matrix can be used to evaluate the effectiveness of the approach. In summary, the proposed approach uses dimensionality reduction techniques like PCA and autoencoder to reduce the feature dimensionality of the Bot-IoT dataset, making it feasible to use DL algorithms like LSTM and CNN to identify botnet attacks. Performance metrics can be used to evaluate the effectiveness of the approach." @default.
- W4385871990 created "2023-08-17" @default.
- W4385871990 creator A5035406249 @default.
- W4385871990 creator A5047257831 @default.
- W4385871990 creator A5051176697 @default.
- W4385871990 date "2023-07-19" @default.
- W4385871990 modified "2023-10-16" @default.
- W4385871990 title "Botnet Attack Detection in IoT Networks using CNN and LSTM" @default.
- W4385871990 cites W2889487754 @default.
- W4385871990 cites W2911505293 @default.
- W4385871990 cites W2945566856 @default.
- W4385871990 doi "https://doi.org/10.1109/icecaa58104.2023.10212330" @default.
- W4385871990 hasPublicationYear "2023" @default.
- W4385871990 type Work @default.
- W4385871990 citedByCount "0" @default.
- W4385871990 crossrefType "proceedings-article" @default.
- W4385871990 hasAuthorship W4385871990A5035406249 @default.
- W4385871990 hasAuthorship W4385871990A5047257831 @default.
- W4385871990 hasAuthorship W4385871990A5051176697 @default.
- W4385871990 hasConcept C101738243 @default.
- W4385871990 hasConcept C108583219 @default.
- W4385871990 hasConcept C110875604 @default.
- W4385871990 hasConcept C111030470 @default.
- W4385871990 hasConcept C119857082 @default.
- W4385871990 hasConcept C124101348 @default.
- W4385871990 hasConcept C136764020 @default.
- W4385871990 hasConcept C138885662 @default.
- W4385871990 hasConcept C153180895 @default.
- W4385871990 hasConcept C154945302 @default.
- W4385871990 hasConcept C22735295 @default.
- W4385871990 hasConcept C27438332 @default.
- W4385871990 hasConcept C2776401178 @default.
- W4385871990 hasConcept C41008148 @default.
- W4385871990 hasConcept C41895202 @default.
- W4385871990 hasConcept C59404180 @default.
- W4385871990 hasConcept C70518039 @default.
- W4385871990 hasConcept C81363708 @default.
- W4385871990 hasConcept C83665646 @default.
- W4385871990 hasConceptScore W4385871990C101738243 @default.
- W4385871990 hasConceptScore W4385871990C108583219 @default.
- W4385871990 hasConceptScore W4385871990C110875604 @default.
- W4385871990 hasConceptScore W4385871990C111030470 @default.
- W4385871990 hasConceptScore W4385871990C119857082 @default.
- W4385871990 hasConceptScore W4385871990C124101348 @default.
- W4385871990 hasConceptScore W4385871990C136764020 @default.
- W4385871990 hasConceptScore W4385871990C138885662 @default.
- W4385871990 hasConceptScore W4385871990C153180895 @default.
- W4385871990 hasConceptScore W4385871990C154945302 @default.
- W4385871990 hasConceptScore W4385871990C22735295 @default.
- W4385871990 hasConceptScore W4385871990C27438332 @default.
- W4385871990 hasConceptScore W4385871990C2776401178 @default.
- W4385871990 hasConceptScore W4385871990C41008148 @default.
- W4385871990 hasConceptScore W4385871990C41895202 @default.
- W4385871990 hasConceptScore W4385871990C59404180 @default.
- W4385871990 hasConceptScore W4385871990C70518039 @default.
- W4385871990 hasConceptScore W4385871990C81363708 @default.
- W4385871990 hasConceptScore W4385871990C83665646 @default.
- W4385871990 hasLocation W43858719901 @default.
- W4385871990 hasOpenAccess W4385871990 @default.
- W4385871990 hasPrimaryLocation W43858719901 @default.
- W4385871990 hasRelatedWork W2002563186 @default.
- W4385871990 hasRelatedWork W2355395139 @default.
- W4385871990 hasRelatedWork W2891059443 @default.
- W4385871990 hasRelatedWork W2983142544 @default.
- W4385871990 hasRelatedWork W3208888551 @default.
- W4385871990 hasRelatedWork W4220682630 @default.
- W4385871990 hasRelatedWork W4281663961 @default.
- W4385871990 hasRelatedWork W4285596704 @default.
- W4385871990 hasRelatedWork W4310873165 @default.
- W4385871990 hasRelatedWork W4313561566 @default.
- W4385871990 isParatext "false" @default.
- W4385871990 isRetracted "false" @default.
- W4385871990 workType "article" @default.