Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385873196> ?p ?o ?g. }
- W4385873196 endingPage "714" @default.
- W4385873196 startingPage "714" @default.
- W4385873196 abstract "General aviation accidents have complex interactions and influences within them that cannot be simply explained and predicted by linear models. This study is based on chaos theory and uses general aviation accident data to conduct research on different timescales (HM-scale, ET-scale, and EF-scale). First, time series are constructed by excluding seasonal patterns from the statistics of general aviation accidents. Secondly, the chaotic properties of multi-timescale series are determined by the 0–1 test and Lyapunov exponent. Finally, by introducing the sparrow search algorithm and tent chaotic mapping, a CSSA-LSSVM prediction model is proposed. The accident data of the National Transportation Safety Board (NTSB) of the United States in the past 15 years is selected for case analysis. The results show that the phase diagram of the 0–1 test presents Brownian motion characteristics, and the maximum Lyapunov exponents of the three scales are all positive, proving the chaotic characteristics of multi-timescale series. The CSSA-LSSVM prediction model’s testing results illustrate its superiority in time series predicting, and when the timescale declines, the prediction error reduces gradually while the fitting effect strengthens and then decreases. This study uncovers the nonlinear chaotic features of general aviation accidents and demonstrates the significance of multi-timescale research in time series analysis and prediction." @default.
- W4385873196 created "2023-08-17" @default.
- W4385873196 creator A5021406980 @default.
- W4385873196 creator A5023653754 @default.
- W4385873196 creator A5045787470 @default.
- W4385873196 creator A5059093843 @default.
- W4385873196 creator A5061078231 @default.
- W4385873196 date "2023-08-16" @default.
- W4385873196 modified "2023-10-17" @default.
- W4385873196 title "Nonlinear Time Series Analysis and Prediction of General Aviation Accidents Based on Multi-Timescales" @default.
- W4385873196 cites W1549386224 @default.
- W4385873196 cites W1856845636 @default.
- W4385873196 cites W2013857630 @default.
- W4385873196 cites W2015761436 @default.
- W4385873196 cites W2056454305 @default.
- W4385873196 cites W2155172089 @default.
- W4385873196 cites W2465541507 @default.
- W4385873196 cites W2473193397 @default.
- W4385873196 cites W2525614189 @default.
- W4385873196 cites W2529309699 @default.
- W4385873196 cites W2532955878 @default.
- W4385873196 cites W2536206634 @default.
- W4385873196 cites W2781571166 @default.
- W4385873196 cites W2789056699 @default.
- W4385873196 cites W2898206134 @default.
- W4385873196 cites W2940986491 @default.
- W4385873196 cites W2948630401 @default.
- W4385873196 cites W2950069593 @default.
- W4385873196 cites W2997591183 @default.
- W4385873196 cites W2998553334 @default.
- W4385873196 cites W3029872365 @default.
- W4385873196 cites W3033577834 @default.
- W4385873196 cites W3127899369 @default.
- W4385873196 cites W3134034025 @default.
- W4385873196 cites W3164032920 @default.
- W4385873196 cites W3178711904 @default.
- W4385873196 cites W3191290211 @default.
- W4385873196 cites W3206444041 @default.
- W4385873196 cites W3214529832 @default.
- W4385873196 cites W4206277894 @default.
- W4385873196 cites W4214704034 @default.
- W4385873196 cites W4224317256 @default.
- W4385873196 cites W4241115065 @default.
- W4385873196 cites W4294959653 @default.
- W4385873196 cites W4318182795 @default.
- W4385873196 cites W4380887547 @default.
- W4385873196 doi "https://doi.org/10.3390/aerospace10080714" @default.
- W4385873196 hasPublicationYear "2023" @default.
- W4385873196 type Work @default.
- W4385873196 citedByCount "0" @default.
- W4385873196 crossrefType "journal-article" @default.
- W4385873196 hasAuthorship W4385873196A5021406980 @default.
- W4385873196 hasAuthorship W4385873196A5023653754 @default.
- W4385873196 hasAuthorship W4385873196A5045787470 @default.
- W4385873196 hasAuthorship W4385873196A5059093843 @default.
- W4385873196 hasAuthorship W4385873196A5061078231 @default.
- W4385873196 hasBestOaLocation W43858731961 @default.
- W4385873196 hasConcept C105795698 @default.
- W4385873196 hasConcept C121332964 @default.
- W4385873196 hasConcept C121864883 @default.
- W4385873196 hasConcept C127313418 @default.
- W4385873196 hasConcept C127413603 @default.
- W4385873196 hasConcept C143724316 @default.
- W4385873196 hasConcept C146978453 @default.
- W4385873196 hasConcept C149782125 @default.
- W4385873196 hasConcept C151406439 @default.
- W4385873196 hasConcept C151730666 @default.
- W4385873196 hasConcept C154945302 @default.
- W4385873196 hasConcept C158622935 @default.
- W4385873196 hasConcept C191544260 @default.
- W4385873196 hasConcept C2777052490 @default.
- W4385873196 hasConcept C2778755073 @default.
- W4385873196 hasConcept C28826006 @default.
- W4385873196 hasConcept C2986287813 @default.
- W4385873196 hasConcept C33923547 @default.
- W4385873196 hasConcept C41008148 @default.
- W4385873196 hasConcept C62520636 @default.
- W4385873196 hasConcept C74448152 @default.
- W4385873196 hasConceptScore W4385873196C105795698 @default.
- W4385873196 hasConceptScore W4385873196C121332964 @default.
- W4385873196 hasConceptScore W4385873196C121864883 @default.
- W4385873196 hasConceptScore W4385873196C127313418 @default.
- W4385873196 hasConceptScore W4385873196C127413603 @default.
- W4385873196 hasConceptScore W4385873196C143724316 @default.
- W4385873196 hasConceptScore W4385873196C146978453 @default.
- W4385873196 hasConceptScore W4385873196C149782125 @default.
- W4385873196 hasConceptScore W4385873196C151406439 @default.
- W4385873196 hasConceptScore W4385873196C151730666 @default.
- W4385873196 hasConceptScore W4385873196C154945302 @default.
- W4385873196 hasConceptScore W4385873196C158622935 @default.
- W4385873196 hasConceptScore W4385873196C191544260 @default.
- W4385873196 hasConceptScore W4385873196C2777052490 @default.
- W4385873196 hasConceptScore W4385873196C2778755073 @default.
- W4385873196 hasConceptScore W4385873196C28826006 @default.
- W4385873196 hasConceptScore W4385873196C2986287813 @default.
- W4385873196 hasConceptScore W4385873196C33923547 @default.
- W4385873196 hasConceptScore W4385873196C41008148 @default.
- W4385873196 hasConceptScore W4385873196C62520636 @default.