Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385873743> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W4385873743 abstract "<p> Spatial filtering and template matching-based methods are commonly used to identify the stimulus frequency from multichannel EEG signals in steady-state visually evoked potentials (SSVEP)-based brain-computer interfaces (BCIs). However, these methods require sufficient calibration data to obtain reliable spatial filters and SSVEP templates, and they underperform in SSVEP identification with small-sample-size calibration data, especially when a single trial of data is available for each stimulus frequency. In contrast to the state-of-the-art task-related component analysis (TRCA)-based methods, which construct spatial filters and SSVEP templates based on the inter-trial task-related components in SSVEP, this study proposes a method called periodically repeated component analysis (PRCA), which constructs spatial filters to maximize the reproducibility across periods and constructs synthetic SSVEP templates by replicating the periodically repeated components (PRCs). We also introduced PRCs into two improved variants of TRCA. Performance evaluation was conducted using a self-collected 16-target dataset and a public 40-target dataset. The proposed methods show significant improvements with less training data and can achieve comparable performance to the baseline methods with 5 trials by using 2 or 3 training trials. Using a single trial of calibration data for each frequency, the PRCA-based methods achieved the highest average accuracies of over 95% and 90% with a 1-s data length and maximum average information transfer rates of 198.8±57.3 bits/min and 191.2±48.1 bits/min for the two data sets, respectively. Our results demonstrate the effectiveness and robustness of PRCA-based methods for SSVEP identification with reduced calibration effort and suggest its potential for practical applications of SSVEP-BCIs. </p>" @default.
- W4385873743 created "2023-08-17" @default.
- W4385873743 creator A5000979147 @default.
- W4385873743 creator A5011769657 @default.
- W4385873743 creator A5090651290 @default.
- W4385873743 date "2023-08-16" @default.
- W4385873743 modified "2023-10-04" @default.
- W4385873743 title "Enhancing SSVEP Identification with Less Individual Calibration Data Using Periodically Repeated Component Analysis" @default.
- W4385873743 doi "https://doi.org/10.36227/techrxiv.23674995.v2" @default.
- W4385873743 hasPublicationYear "2023" @default.
- W4385873743 type Work @default.
- W4385873743 citedByCount "0" @default.
- W4385873743 crossrefType "posted-content" @default.
- W4385873743 hasAuthorship W4385873743A5000979147 @default.
- W4385873743 hasAuthorship W4385873743A5011769657 @default.
- W4385873743 hasAuthorship W4385873743A5090651290 @default.
- W4385873743 hasBestOaLocation W43858737431 @default.
- W4385873743 hasConcept C105795698 @default.
- W4385873743 hasConcept C115961682 @default.
- W4385873743 hasConcept C118552586 @default.
- W4385873743 hasConcept C121475858 @default.
- W4385873743 hasConcept C153180895 @default.
- W4385873743 hasConcept C154945302 @default.
- W4385873743 hasConcept C15744967 @default.
- W4385873743 hasConcept C158096908 @default.
- W4385873743 hasConcept C165838908 @default.
- W4385873743 hasConcept C173201364 @default.
- W4385873743 hasConcept C199360897 @default.
- W4385873743 hasConcept C2780692498 @default.
- W4385873743 hasConcept C28490314 @default.
- W4385873743 hasConcept C33923547 @default.
- W4385873743 hasConcept C41008148 @default.
- W4385873743 hasConcept C51432778 @default.
- W4385873743 hasConcept C522805319 @default.
- W4385873743 hasConcept C82714645 @default.
- W4385873743 hasConceptScore W4385873743C105795698 @default.
- W4385873743 hasConceptScore W4385873743C115961682 @default.
- W4385873743 hasConceptScore W4385873743C118552586 @default.
- W4385873743 hasConceptScore W4385873743C121475858 @default.
- W4385873743 hasConceptScore W4385873743C153180895 @default.
- W4385873743 hasConceptScore W4385873743C154945302 @default.
- W4385873743 hasConceptScore W4385873743C15744967 @default.
- W4385873743 hasConceptScore W4385873743C158096908 @default.
- W4385873743 hasConceptScore W4385873743C165838908 @default.
- W4385873743 hasConceptScore W4385873743C173201364 @default.
- W4385873743 hasConceptScore W4385873743C199360897 @default.
- W4385873743 hasConceptScore W4385873743C2780692498 @default.
- W4385873743 hasConceptScore W4385873743C28490314 @default.
- W4385873743 hasConceptScore W4385873743C33923547 @default.
- W4385873743 hasConceptScore W4385873743C41008148 @default.
- W4385873743 hasConceptScore W4385873743C51432778 @default.
- W4385873743 hasConceptScore W4385873743C522805319 @default.
- W4385873743 hasConceptScore W4385873743C82714645 @default.
- W4385873743 hasLocation W43858737431 @default.
- W4385873743 hasLocation W43858737432 @default.
- W4385873743 hasOpenAccess W4385873743 @default.
- W4385873743 hasPrimaryLocation W43858737431 @default.
- W4385873743 hasRelatedWork W1601197851 @default.
- W4385873743 hasRelatedWork W2131772024 @default.
- W4385873743 hasRelatedWork W2137134897 @default.
- W4385873743 hasRelatedWork W2151753859 @default.
- W4385873743 hasRelatedWork W2756255870 @default.
- W4385873743 hasRelatedWork W2800457852 @default.
- W4385873743 hasRelatedWork W2808430421 @default.
- W4385873743 hasRelatedWork W4384930270 @default.
- W4385873743 hasRelatedWork W4384933682 @default.
- W4385873743 hasRelatedWork W4385873743 @default.
- W4385873743 isParatext "false" @default.
- W4385873743 isRetracted "false" @default.
- W4385873743 workType "article" @default.