Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385874648> ?p ?o ?g. }
- W4385874648 endingPage "35" @default.
- W4385874648 startingPage "1" @default.
- W4385874648 abstract "ABSTRACTDevelopmental Language Disorder (DLD) affects children’s comprehension and production of spoken language without any known biomedical condition. The importance of early identification of DLD is widely acknowledged. Several studies have explored DLD predictors to identify children needing further diagnostic investigation. Most of these measures might be problematic for young children and bilingual children. Based on literature reporting fragile rhythmic abilities in children with DLD, in our study, we followed a different approach. We explored how non-linguistic measures of rhythmic anticipation can be gathered by means of advanced information technology and used to identify children at risk of DLD. With this aim, we developed MARS, a web-based tool to collect such data in a playful way and to analyze them using Machine Learning. MARS engages children in rhythmic babbling exercises, records their vocal productions, and analyzes the recordings. We discuss the methodological rationale of MARS and its underlying technology, and we describe a preliminary study with N = 47 children with and without DLD. The analysis of the audio features of participants’ rhythmic vocal productions highlights different patterns in the two groups. This result, although preliminary, suggests that MARS could be a valuable tool for early DLD assessment.KEYWORDS: Machine learningartificial intelligencelinguistic assessmentchildren with DLDaudio featuresweb-application AcknowledgmentsWe would like to express our sincere gratitude to all those who have provided support and assistance throughout the course of this research. Without their valuable contributions, this project would not have been possible.Disclosure statementNo potential conflict of interest was reported by the author(s).Notes1 https://github.com/scikit-learn-contrib/imbalanced-learn2 https://scikit-learn.org/stable/Additional informationNotes on contributorsEleonora Aida BeccaluvaEleonora Aida Beccaluva (e.beccaluva@campus.unimib.it) is a Psychologist interested in Human-Computer-Interaction, Ux Research, and Innovative Technologies applied to Disability; she is a Ph.D. Candidate in Psychology, Linguistics, and Cognitive Neuroscience at the Psychology Department of Milano-Bicocca University and the Department of Electronics, Information, and Bio-engineering of Politecnico di Milano.Fabio CataniaFabio Catania (fabiocat@mit.edu) is a Computer Engineer with an interest in using conversational technology and affective computing to help people with neurodevelopmental disorders enhance communication skills; he is a Postdoctoral Fellow at the McGovern Institute for Brain Research of Massachusetts Institute of Technology and the Department of Electronics, Information and Bio-engineering of Politecnico di Milano.Fabrizio ArosioFabrizio Arosio (fabrizio.arosio@unimib.it, url) is a Linguist with an interest in temporal information encoding and morphosyntactic information processing; he is a Associate Professor at the Psychology Department of Milano-Bicocca University.Franca GarzottoFranca Garzotto (franca.garzotto@polimi.it) is a Mathematician with an interest in methods and tools for modeling hypermedia applications, usability, and human-machine interaction; she is an Associate Professor in the Department of Electronics, Information, and Bio-engineering of Politecnico di Milano." @default.
- W4385874648 created "2023-08-17" @default.
- W4385874648 creator A5001463197 @default.
- W4385874648 creator A5012517784 @default.
- W4385874648 creator A5047667036 @default.
- W4385874648 creator A5064651873 @default.
- W4385874648 date "2023-08-16" @default.
- W4385874648 modified "2023-10-04" @default.
- W4385874648 title "Predicting developmental language disorders using artificial intelligence and a speech data analysis tool" @default.
- W4385874648 cites W165021617 @default.
- W4385874648 cites W1685816913 @default.
- W4385874648 cites W1765692115 @default.
- W4385874648 cites W1829116831 @default.
- W4385874648 cites W1923630145 @default.
- W4385874648 cites W1964150525 @default.
- W4385874648 cites W1974238257 @default.
- W4385874648 cites W1978581679 @default.
- W4385874648 cites W1979088477 @default.
- W4385874648 cites W1980838652 @default.
- W4385874648 cites W1980965193 @default.
- W4385874648 cites W1982118893 @default.
- W4385874648 cites W1982189652 @default.
- W4385874648 cites W1984090792 @default.
- W4385874648 cites W1986346898 @default.
- W4385874648 cites W1988693828 @default.
- W4385874648 cites W1995707728 @default.
- W4385874648 cites W1996350221 @default.
- W4385874648 cites W2000339959 @default.
- W4385874648 cites W2004744337 @default.
- W4385874648 cites W2007793165 @default.
- W4385874648 cites W2010692105 @default.
- W4385874648 cites W2013112874 @default.
- W4385874648 cites W2015075592 @default.
- W4385874648 cites W2021687240 @default.
- W4385874648 cites W2022138317 @default.
- W4385874648 cites W2023412552 @default.
- W4385874648 cites W2029310766 @default.
- W4385874648 cites W2030878599 @default.
- W4385874648 cites W2034273689 @default.
- W4385874648 cites W2037740990 @default.
- W4385874648 cites W2041923198 @default.
- W4385874648 cites W2051346418 @default.
- W4385874648 cites W2055520647 @default.
- W4385874648 cites W2057935874 @default.
- W4385874648 cites W2060975270 @default.
- W4385874648 cites W2061276609 @default.
- W4385874648 cites W2085662862 @default.
- W4385874648 cites W2087626145 @default.
- W4385874648 cites W2096162685 @default.
- W4385874648 cites W2101146468 @default.
- W4385874648 cites W2104158273 @default.
- W4385874648 cites W2107658214 @default.
- W4385874648 cites W2111114595 @default.
- W4385874648 cites W2117323449 @default.
- W4385874648 cites W2121491902 @default.
- W4385874648 cites W2132566726 @default.
- W4385874648 cites W2133231208 @default.
- W4385874648 cites W2137930081 @default.
- W4385874648 cites W2148143831 @default.
- W4385874648 cites W2154146386 @default.
- W4385874648 cites W2166503829 @default.
- W4385874648 cites W2218012463 @default.
- W4385874648 cites W2239141610 @default.
- W4385874648 cites W2339184487 @default.
- W4385874648 cites W2407136070 @default.
- W4385874648 cites W2415764246 @default.
- W4385874648 cites W2517760930 @default.
- W4385874648 cites W2546745584 @default.
- W4385874648 cites W2606768116 @default.
- W4385874648 cites W2765456582 @default.
- W4385874648 cites W2769304445 @default.
- W4385874648 cites W2782898451 @default.
- W4385874648 cites W2785639030 @default.
- W4385874648 cites W2789472937 @default.
- W4385874648 cites W2802563872 @default.
- W4385874648 cites W2896464508 @default.
- W4385874648 cites W2910789397 @default.
- W4385874648 cites W2926460920 @default.
- W4385874648 cites W2943344560 @default.
- W4385874648 cites W2944222458 @default.
- W4385874648 cites W2945095411 @default.
- W4385874648 cites W2973237404 @default.
- W4385874648 cites W2990517718 @default.
- W4385874648 cites W3009908589 @default.
- W4385874648 cites W3012131628 @default.
- W4385874648 cites W3012908001 @default.
- W4385874648 cites W3016223211 @default.
- W4385874648 cites W3025154599 @default.
- W4385874648 cites W3027896634 @default.
- W4385874648 cites W3034527492 @default.
- W4385874648 cites W3048790884 @default.
- W4385874648 cites W3093260185 @default.
- W4385874648 cites W3114184012 @default.
- W4385874648 cites W3124475197 @default.
- W4385874648 cites W3155584997 @default.
- W4385874648 cites W3163121887 @default.
- W4385874648 cites W3175127639 @default.
- W4385874648 cites W3188648095 @default.