Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385874725> ?p ?o ?g. }
- W4385874725 abstract "The assessment of railway safety hazards is a long-term and difficult task, and developing efficient assessment models has made significant contributions to preventing and controlling these hazards. This paper aims to demonstrate that the Linformer model based on self-attention performs better than other typical qualitative, machine learning, and deep learning models in hazard susceptibility assessment. The models are used to evaluate the susceptibility of the southwest railway. And 13 conditional factors that affect geological hazards are selected based on the geological features, geomorphometric features, hydrological features, and environmental features of the southwest railway hazard research area. A data set of 80% of the 1474 hazard and non-hazard points in the study area is randomly selected to train the susceptibility model, and the remaining 20% is used to verify the newly established model. The LR, SVM, LSTM, and Linformer models are tested using the accuracy, precision, recall rate, F1 score calculation, and AUC assessment indicators to confirm different variability. Based on the Jenks method, the susceptibility evaluation results of the southwest railway in the study area are divided into five groups from high to low. The geo-hazard susceptibility map shows that while the central and northeastern railways are less impacted by hazards, the susceptibility is higher in the southwest of the study area." @default.
- W4385874725 created "2023-08-17" @default.
- W4385874725 creator A5020052802 @default.
- W4385874725 creator A5034105939 @default.
- W4385874725 creator A5044089544 @default.
- W4385874725 creator A5053797252 @default.
- W4385874725 creator A5056098043 @default.
- W4385874725 creator A5066329737 @default.
- W4385874725 date "2023-08-16" @default.
- W4385874725 modified "2023-10-04" @default.
- W4385874725 title "A dataset-enhanced Linformer model for geo-hazards susceptibility assessment: a case study of the railway in Southwest China" @default.
- W4385874725 cites W1991779796 @default.
- W4385874725 cites W1998025025 @default.
- W4385874725 cites W2012118327 @default.
- W4385874725 cites W2018459837 @default.
- W4385874725 cites W2020605840 @default.
- W4385874725 cites W2044648858 @default.
- W4385874725 cites W2064675550 @default.
- W4385874725 cites W2069930921 @default.
- W4385874725 cites W2069993095 @default.
- W4385874725 cites W2090091295 @default.
- W4385874725 cites W2097134140 @default.
- W4385874725 cites W2139416101 @default.
- W4385874725 cites W2143612262 @default.
- W4385874725 cites W2160461085 @default.
- W4385874725 cites W2193898033 @default.
- W4385874725 cites W2287278712 @default.
- W4385874725 cites W2329793375 @default.
- W4385874725 cites W2389698457 @default.
- W4385874725 cites W2549184242 @default.
- W4385874725 cites W2567854072 @default.
- W4385874725 cites W2621028994 @default.
- W4385874725 cites W2741517055 @default.
- W4385874725 cites W2761962795 @default.
- W4385874725 cites W2802780461 @default.
- W4385874725 cites W2808860853 @default.
- W4385874725 cites W2878761843 @default.
- W4385874725 cites W2880239935 @default.
- W4385874725 cites W2885746866 @default.
- W4385874725 cites W2895196240 @default.
- W4385874725 cites W2905019064 @default.
- W4385874725 cites W2905708141 @default.
- W4385874725 cites W2906737537 @default.
- W4385874725 cites W2911424673 @default.
- W4385874725 cites W2949343027 @default.
- W4385874725 cites W2962224590 @default.
- W4385874725 cites W2969688345 @default.
- W4385874725 cites W2974447785 @default.
- W4385874725 cites W2981581709 @default.
- W4385874725 cites W2995668977 @default.
- W4385874725 cites W2999729702 @default.
- W4385874725 cites W3008924545 @default.
- W4385874725 cites W3009178790 @default.
- W4385874725 cites W3011022339 @default.
- W4385874725 cites W3012139378 @default.
- W4385874725 cites W3032913569 @default.
- W4385874725 cites W3044718651 @default.
- W4385874725 cites W3048285196 @default.
- W4385874725 cites W3092986371 @default.
- W4385874725 cites W3103865021 @default.
- W4385874725 cites W3112880961 @default.
- W4385874725 cites W3130089959 @default.
- W4385874725 cites W3134194268 @default.
- W4385874725 cites W3144445321 @default.
- W4385874725 cites W3168782052 @default.
- W4385874725 cites W3210422807 @default.
- W4385874725 cites W3211247714 @default.
- W4385874725 cites W4200108305 @default.
- W4385874725 cites W4206715406 @default.
- W4385874725 cites W4226490104 @default.
- W4385874725 cites W4230674625 @default.
- W4385874725 cites W4239510810 @default.
- W4385874725 cites W4283689464 @default.
- W4385874725 cites W4293065129 @default.
- W4385874725 cites W4307954863 @default.
- W4385874725 cites W4385145194 @default.
- W4385874725 doi "https://doi.org/10.1007/s12665-023-11080-1" @default.
- W4385874725 hasPublicationYear "2023" @default.
- W4385874725 type Work @default.
- W4385874725 citedByCount "0" @default.
- W4385874725 crossrefType "journal-article" @default.
- W4385874725 hasAuthorship W4385874725A5020052802 @default.
- W4385874725 hasAuthorship W4385874725A5034105939 @default.
- W4385874725 hasAuthorship W4385874725A5044089544 @default.
- W4385874725 hasAuthorship W4385874725A5053797252 @default.
- W4385874725 hasAuthorship W4385874725A5056098043 @default.
- W4385874725 hasAuthorship W4385874725A5066329737 @default.
- W4385874725 hasBestOaLocation W43858747251 @default.
- W4385874725 hasConcept C105795698 @default.
- W4385874725 hasConcept C12174686 @default.
- W4385874725 hasConcept C127313418 @default.
- W4385874725 hasConcept C127413603 @default.
- W4385874725 hasConcept C16674752 @default.
- W4385874725 hasConcept C178790620 @default.
- W4385874725 hasConcept C185592680 @default.
- W4385874725 hasConcept C200601418 @default.
- W4385874725 hasConcept C206355099 @default.
- W4385874725 hasConcept C33923547 @default.
- W4385874725 hasConcept C38652104 @default.
- W4385874725 hasConcept C39432304 @default.