Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385875768> ?p ?o ?g. }
- W4385875768 abstract "Drought is mainly triggered by the lack of precipitation, which can lead to insufficient water supply for crops thus affecting their growth and development. Reliable drought monitoring is crucial to understanding drought risk and avoiding drought-induced crop yield losses. Based on the Stacking regression method and multiple remotely-sensed drought factors from 2001 to 2017, this study developed an ensemble learning framework for monitoring agricultural drought in major winter wheat-producing areas in China. Stacking used five machine learning algorithms, namely, extreme gradient boosting, support vector regression, extra trees, and multi-layer perceptron, as the base learners to model the relationship between remote sensing drought factors and 1-, 3-, and 6-month standardized precipitation evapotranspiration index (SPEI). In this study, county-level winter wheat yield records and drought maps provided by the Global SPEI database (SPEIbase) were adopted to assess the suitability of Stacking-predicted SPEI drought maps in agricultural drought monitoring. The results show that Stacking outperformed other machine learning algorithms in terms of estimation accuracy, with the highest R 2 value of 0.77 and the lowest root mean square error (RMSE) of 0.47. The longer the time scale of model-predicted SPEI, the higher its correlation with detrended winter wheat yields. The comparison with the drought maps of SPEIbase shows that the Stacking-predicted drought maps successfully captured the spatial pattern and intensity change of drought events. The approach presented in the study has good applicability for agricultural drought monitoring and could be extended to the rest of the areas." @default.
- W4385875768 created "2023-08-17" @default.
- W4385875768 creator A5009116003 @default.
- W4385875768 creator A5022684433 @default.
- W4385875768 creator A5025438179 @default.
- W4385875768 creator A5029434966 @default.
- W4385875768 creator A5083980544 @default.
- W4385875768 creator A5090732689 @default.
- W4385875768 date "2023-08-15" @default.
- W4385875768 modified "2023-10-04" @default.
- W4385875768 title "Ensemble learning based on remote sensing data for monitoring agricultural drought in major winter wheat-producing areas of China" @default.
- W4385875768 cites W1540747148 @default.
- W4385875768 cites W1964386488 @default.
- W4385875768 cites W1977556410 @default.
- W4385875768 cites W1978617972 @default.
- W4385875768 cites W1985893659 @default.
- W4385875768 cites W1994638005 @default.
- W4385875768 cites W1997893060 @default.
- W4385875768 cites W2002115844 @default.
- W4385875768 cites W2005738319 @default.
- W4385875768 cites W2012378586 @default.
- W4385875768 cites W2014927013 @default.
- W4385875768 cites W2018764772 @default.
- W4385875768 cites W2021365919 @default.
- W4385875768 cites W2042673479 @default.
- W4385875768 cites W2056132907 @default.
- W4385875768 cites W2059320386 @default.
- W4385875768 cites W2064146923 @default.
- W4385875768 cites W2073633517 @default.
- W4385875768 cites W2077814694 @default.
- W4385875768 cites W2077968790 @default.
- W4385875768 cites W2082164506 @default.
- W4385875768 cites W2091085232 @default.
- W4385875768 cites W2095055020 @default.
- W4385875768 cites W2115439525 @default.
- W4385875768 cites W2117685393 @default.
- W4385875768 cites W2124241026 @default.
- W4385875768 cites W2129161539 @default.
- W4385875768 cites W2134206969 @default.
- W4385875768 cites W2166391252 @default.
- W4385875768 cites W2206110437 @default.
- W4385875768 cites W2248192683 @default.
- W4385875768 cites W2318680928 @default.
- W4385875768 cites W2472414862 @default.
- W4385875768 cites W2529212925 @default.
- W4385875768 cites W2553288044 @default.
- W4385875768 cites W2553708848 @default.
- W4385875768 cites W2669629933 @default.
- W4385875768 cites W2763552872 @default.
- W4385875768 cites W2772461159 @default.
- W4385875768 cites W2786705856 @default.
- W4385875768 cites W2802090116 @default.
- W4385875768 cites W28412257 @default.
- W4385875768 cites W2922725435 @default.
- W4385875768 cites W2922882700 @default.
- W4385875768 cites W2954311699 @default.
- W4385875768 cites W3004408348 @default.
- W4385875768 cites W3013697002 @default.
- W4385875768 cites W3037968153 @default.
- W4385875768 cites W3047691451 @default.
- W4385875768 cites W3082937332 @default.
- W4385875768 cites W3102476541 @default.
- W4385875768 cites W3156959225 @default.
- W4385875768 cites W3197131317 @default.
- W4385875768 cites W4224990313 @default.
- W4385875768 cites W4239510810 @default.
- W4385875768 doi "https://doi.org/10.1177/03091333231188814" @default.
- W4385875768 hasPublicationYear "2023" @default.
- W4385875768 type Work @default.
- W4385875768 citedByCount "0" @default.
- W4385875768 crossrefType "journal-article" @default.
- W4385875768 hasAuthorship W4385875768A5009116003 @default.
- W4385875768 hasAuthorship W4385875768A5022684433 @default.
- W4385875768 hasAuthorship W4385875768A5025438179 @default.
- W4385875768 hasAuthorship W4385875768A5029434966 @default.
- W4385875768 hasAuthorship W4385875768A5083980544 @default.
- W4385875768 hasAuthorship W4385875768A5090732689 @default.
- W4385875768 hasConcept C105795698 @default.
- W4385875768 hasConcept C107054158 @default.
- W4385875768 hasConcept C118518473 @default.
- W4385875768 hasConcept C119857082 @default.
- W4385875768 hasConcept C153294291 @default.
- W4385875768 hasConcept C166957645 @default.
- W4385875768 hasConcept C176783924 @default.
- W4385875768 hasConcept C179717631 @default.
- W4385875768 hasConcept C18903297 @default.
- W4385875768 hasConcept C205649164 @default.
- W4385875768 hasConcept C33923547 @default.
- W4385875768 hasConcept C39432304 @default.
- W4385875768 hasConcept C41008148 @default.
- W4385875768 hasConcept C50644808 @default.
- W4385875768 hasConcept C83546350 @default.
- W4385875768 hasConcept C86803240 @default.
- W4385875768 hasConceptScore W4385875768C105795698 @default.
- W4385875768 hasConceptScore W4385875768C107054158 @default.
- W4385875768 hasConceptScore W4385875768C118518473 @default.
- W4385875768 hasConceptScore W4385875768C119857082 @default.
- W4385875768 hasConceptScore W4385875768C153294291 @default.
- W4385875768 hasConceptScore W4385875768C166957645 @default.
- W4385875768 hasConceptScore W4385875768C176783924 @default.