Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385876906> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W4385876906 abstract "Abstract. Satellite instruments provide spatially extended data with a high temporal resolution on almost global scales. However, nowadays, it is still a challenge to extract fully three-dimensional data from the current generation of satellite instruments, which either provide horizontal patterns or vertical profiles along the orbit track. Following this, we train a neural network in this study to generate three-dimensional cloud structures from MSG SEVIRI satellite data in high spatio-temporal resolution. We evaluate the derived artificial intelligence-based predictions against the along-track radar reflectivity from the CloudSat satellite. By inferring the pixel-wise cloud column to the satellite’s full disk, our results emphasize that spatio-temporal dynamics can be delineated for the whole domain. Robust reflectivities are derived for different cloud types with a clear distinction regarding the cloud's intensity, height, and shape. Cloud-free pixels tend to be over-represented because of the high imbalance between cloudy and clear-sky samples. The average error (RMSE) spans about 7.5 % (3.41 dBZ) of the total value range enabling the advanced analysis of vertical cloud properties. Although we receive high accordance between radar data and our predictions, the quality of the results varies with the complexity of the cloud structure. The representation of multi-level and mesoscale clouds is often simplified. Despite current limitations, the obtained results can help close current data gaps and exhibit the potential to be applied to various climate science questions, like the further investigation of deep convection through time and space." @default.
- W4385876906 created "2023-08-17" @default.
- W4385876906 creator A5012769954 @default.
- W4385876906 creator A5064713298 @default.
- W4385876906 creator A5079047120 @default.
- W4385876906 date "2023-08-16" @default.
- W4385876906 modified "2023-09-30" @default.
- W4385876906 title "AI-derived 3D cloud tomography from geostationary 2D satellite data" @default.
- W4385876906 doi "https://doi.org/10.5194/egusphere-2023-1834" @default.
- W4385876906 hasPublicationYear "2023" @default.
- W4385876906 type Work @default.
- W4385876906 citedByCount "0" @default.
- W4385876906 crossrefType "posted-content" @default.
- W4385876906 hasAuthorship W4385876906A5012769954 @default.
- W4385876906 hasAuthorship W4385876906A5064713298 @default.
- W4385876906 hasAuthorship W4385876906A5079047120 @default.
- W4385876906 hasBestOaLocation W43858769061 @default.
- W4385876906 hasConcept C111919701 @default.
- W4385876906 hasConcept C119666444 @default.
- W4385876906 hasConcept C121332964 @default.
- W4385876906 hasConcept C127313418 @default.
- W4385876906 hasConcept C1276947 @default.
- W4385876906 hasConcept C153294291 @default.
- W4385876906 hasConcept C154945302 @default.
- W4385876906 hasConcept C160633673 @default.
- W4385876906 hasConcept C16405173 @default.
- W4385876906 hasConcept C19269812 @default.
- W4385876906 hasConcept C199194280 @default.
- W4385876906 hasConcept C205649164 @default.
- W4385876906 hasConcept C2778516841 @default.
- W4385876906 hasConcept C2781013037 @default.
- W4385876906 hasConcept C40382383 @default.
- W4385876906 hasConcept C41008148 @default.
- W4385876906 hasConcept C554190296 @default.
- W4385876906 hasConcept C62520636 @default.
- W4385876906 hasConcept C62649853 @default.
- W4385876906 hasConcept C76155785 @default.
- W4385876906 hasConcept C79974875 @default.
- W4385876906 hasConceptScore W4385876906C111919701 @default.
- W4385876906 hasConceptScore W4385876906C119666444 @default.
- W4385876906 hasConceptScore W4385876906C121332964 @default.
- W4385876906 hasConceptScore W4385876906C127313418 @default.
- W4385876906 hasConceptScore W4385876906C1276947 @default.
- W4385876906 hasConceptScore W4385876906C153294291 @default.
- W4385876906 hasConceptScore W4385876906C154945302 @default.
- W4385876906 hasConceptScore W4385876906C160633673 @default.
- W4385876906 hasConceptScore W4385876906C16405173 @default.
- W4385876906 hasConceptScore W4385876906C19269812 @default.
- W4385876906 hasConceptScore W4385876906C199194280 @default.
- W4385876906 hasConceptScore W4385876906C205649164 @default.
- W4385876906 hasConceptScore W4385876906C2778516841 @default.
- W4385876906 hasConceptScore W4385876906C2781013037 @default.
- W4385876906 hasConceptScore W4385876906C40382383 @default.
- W4385876906 hasConceptScore W4385876906C41008148 @default.
- W4385876906 hasConceptScore W4385876906C554190296 @default.
- W4385876906 hasConceptScore W4385876906C62520636 @default.
- W4385876906 hasConceptScore W4385876906C62649853 @default.
- W4385876906 hasConceptScore W4385876906C76155785 @default.
- W4385876906 hasConceptScore W4385876906C79974875 @default.
- W4385876906 hasFunder F4320309895 @default.
- W4385876906 hasLocation W43858769061 @default.
- W4385876906 hasOpenAccess W4385876906 @default.
- W4385876906 hasPrimaryLocation W43858769061 @default.
- W4385876906 hasRelatedWork W2003007722 @default.
- W4385876906 hasRelatedWork W2040693404 @default.
- W4385876906 hasRelatedWork W2068212092 @default.
- W4385876906 hasRelatedWork W2092922933 @default.
- W4385876906 hasRelatedWork W2144937340 @default.
- W4385876906 hasRelatedWork W2984378033 @default.
- W4385876906 hasRelatedWork W3149252978 @default.
- W4385876906 hasRelatedWork W3175229667 @default.
- W4385876906 hasRelatedWork W3216898366 @default.
- W4385876906 hasRelatedWork W4205745323 @default.
- W4385876906 isParatext "false" @default.
- W4385876906 isRetracted "false" @default.
- W4385876906 workType "article" @default.