Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385877054> ?p ?o ?g. }
- W4385877054 abstract "Machine learning algorithms often require large training sets to perform well, but labeling such large amounts of data is not always feasible, as in many applications, substantial human effort and material cost is needed. Finding effective ways to reduce the size of training sets while maintaining the same performance is then crucial: one wants to choose the best sample of fixed size to be labeled among a given population, aiming at an accurate prediction of the response. This challenge has been studied in detail in classification, but not deeply enough in regression, which is known to be a more difficult task for active learning despite its need in practice. Few model-free active learning methods have been proposed that detect the new samples to be labeled using unlabeled data, but they lack the information of the conditional distribution between the response and the features. In this paper, we propose a standard regression tree-based active learning method for regression that improves significantly upon existing active learning approaches. It provides impressive results for small and large training sets and an appreciably low variance within several runs. We also exploit model-free approaches, and adapt them to our algorithm to utilize maximum information. Through experiments on numerous benchmark datasets, we demonstrate that our framework improves existing methods and is effective in learning a regression model from a very limited labeled dataset, reducing the sample size for a fixed level of performance, even with many features." @default.
- W4385877054 created "2023-08-17" @default.
- W4385877054 creator A5047304958 @default.
- W4385877054 creator A5052815615 @default.
- W4385877054 creator A5067052030 @default.
- W4385877054 creator A5071766948 @default.
- W4385877054 creator A5079138395 @default.
- W4385877054 creator A5087456679 @default.
- W4385877054 date "2023-08-16" @default.
- W4385877054 modified "2023-10-04" @default.
- W4385877054 title "Regression tree-based active learning" @default.
- W4385877054 cites W1568139284 @default.
- W4385877054 cites W1773652845 @default.
- W4385877054 cites W1982392262 @default.
- W4385877054 cites W1989428732 @default.
- W4385877054 cites W1993615002 @default.
- W4385877054 cites W1993714383 @default.
- W4385877054 cites W2082745003 @default.
- W4385877054 cites W2142275721 @default.
- W4385877054 cites W2341531400 @default.
- W4385877054 cites W2515449786 @default.
- W4385877054 cites W2622419245 @default.
- W4385877054 cites W2943868439 @default.
- W4385877054 cites W2962755824 @default.
- W4385877054 cites W2963199592 @default.
- W4385877054 cites W2976807053 @default.
- W4385877054 cites W3003471430 @default.
- W4385877054 cites W3104991355 @default.
- W4385877054 cites W3112014425 @default.
- W4385877054 cites W4241918848 @default.
- W4385877054 cites W4300031234 @default.
- W4385877054 cites W4362219304 @default.
- W4385877054 doi "https://doi.org/10.1007/s10618-023-00951-7" @default.
- W4385877054 hasPublicationYear "2023" @default.
- W4385877054 type Work @default.
- W4385877054 citedByCount "0" @default.
- W4385877054 crossrefType "journal-article" @default.
- W4385877054 hasAuthorship W4385877054A5047304958 @default.
- W4385877054 hasAuthorship W4385877054A5052815615 @default.
- W4385877054 hasAuthorship W4385877054A5067052030 @default.
- W4385877054 hasAuthorship W4385877054A5071766948 @default.
- W4385877054 hasAuthorship W4385877054A5079138395 @default.
- W4385877054 hasAuthorship W4385877054A5087456679 @default.
- W4385877054 hasBestOaLocation W43858770541 @default.
- W4385877054 hasConcept C105795698 @default.
- W4385877054 hasConcept C113174947 @default.
- W4385877054 hasConcept C119857082 @default.
- W4385877054 hasConcept C121955636 @default.
- W4385877054 hasConcept C124101348 @default.
- W4385877054 hasConcept C13280743 @default.
- W4385877054 hasConcept C134306372 @default.
- W4385877054 hasConcept C144024400 @default.
- W4385877054 hasConcept C144133560 @default.
- W4385877054 hasConcept C149923435 @default.
- W4385877054 hasConcept C154945302 @default.
- W4385877054 hasConcept C165696696 @default.
- W4385877054 hasConcept C185592680 @default.
- W4385877054 hasConcept C185798385 @default.
- W4385877054 hasConcept C196083921 @default.
- W4385877054 hasConcept C198531522 @default.
- W4385877054 hasConcept C205649164 @default.
- W4385877054 hasConcept C2908647359 @default.
- W4385877054 hasConcept C33923547 @default.
- W4385877054 hasConcept C38652104 @default.
- W4385877054 hasConcept C41008148 @default.
- W4385877054 hasConcept C43617362 @default.
- W4385877054 hasConcept C77967617 @default.
- W4385877054 hasConcept C83546350 @default.
- W4385877054 hasConcept C84525736 @default.
- W4385877054 hasConceptScore W4385877054C105795698 @default.
- W4385877054 hasConceptScore W4385877054C113174947 @default.
- W4385877054 hasConceptScore W4385877054C119857082 @default.
- W4385877054 hasConceptScore W4385877054C121955636 @default.
- W4385877054 hasConceptScore W4385877054C124101348 @default.
- W4385877054 hasConceptScore W4385877054C13280743 @default.
- W4385877054 hasConceptScore W4385877054C134306372 @default.
- W4385877054 hasConceptScore W4385877054C144024400 @default.
- W4385877054 hasConceptScore W4385877054C144133560 @default.
- W4385877054 hasConceptScore W4385877054C149923435 @default.
- W4385877054 hasConceptScore W4385877054C154945302 @default.
- W4385877054 hasConceptScore W4385877054C165696696 @default.
- W4385877054 hasConceptScore W4385877054C185592680 @default.
- W4385877054 hasConceptScore W4385877054C185798385 @default.
- W4385877054 hasConceptScore W4385877054C196083921 @default.
- W4385877054 hasConceptScore W4385877054C198531522 @default.
- W4385877054 hasConceptScore W4385877054C205649164 @default.
- W4385877054 hasConceptScore W4385877054C2908647359 @default.
- W4385877054 hasConceptScore W4385877054C33923547 @default.
- W4385877054 hasConceptScore W4385877054C38652104 @default.
- W4385877054 hasConceptScore W4385877054C41008148 @default.
- W4385877054 hasConceptScore W4385877054C43617362 @default.
- W4385877054 hasConceptScore W4385877054C77967617 @default.
- W4385877054 hasConceptScore W4385877054C83546350 @default.
- W4385877054 hasConceptScore W4385877054C84525736 @default.
- W4385877054 hasFunder F4320333406 @default.
- W4385877054 hasLocation W43858770541 @default.
- W4385877054 hasLocation W43858770542 @default.
- W4385877054 hasOpenAccess W4385877054 @default.
- W4385877054 hasPrimaryLocation W43858770541 @default.
- W4385877054 hasRelatedWork W1470425429 @default.