Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385877165> ?p ?o ?g. }
- W4385877165 abstract "Automatic and precise jujube yield prediction is important for the management of orchards and the allocation of resources. Traditional yield prediction techniques are based on object detection, which predicts a box to achieve target statistics, but are often used in sparse target settings. Those techniques, however, are challenging to use in real-world situations with particularly dense jujubes. The box labeling is labor- and time-intensive, and the robustness of the system is adversely impacted by severe occlusions. Therefore, there is an urgent need to develop a robust method for predicting jujube yield based on images. But in addition to the extreme occlusions, it is also challenging due to varying scales, complex backgrounds, and illumination variations.In this work, we developed a simple and effective feature enhancement guided network for yield estimation of high-density jujube. It has two key designs: Firstly, we proposed a novel label representation method based on uniform distribution, which provides a better characterization of object appearance compared to the Gaussian-kernel-based method. This new method is simpler to implement and has shown greater success. Secondly, we introduced a feature enhancement guided network for jujube counting, comprising three main components: backbone, density regression module, and feature enhancement module. The feature enhancement module plays a crucial role in perceiving the target of interest effectively and guiding the density regression module to make accurate predictions. Notably, our method takes advantage of this module to improve the overall performance of our network. To validate the effectiveness of our method, we conducted experiments on a collected dataset consisting of 692 images containing a total of 40,344 jujubes. The results demonstrate the high accuracy of our method in estimating the number of jujubes, with a mean absolute error (MAE) of 9.62 and a mean squared error (MSE) of 22.47. Importantly, our method outperforms other state-of-the-art methods by a significant margin, highlighting its superiority in jujube yield estimation.The proposed method provides an efficient image-based technique for predicting the yield of jujubes. The study will advance the application of artificial intelligence for high-density target recognition in agriculture and forestry. By leveraging this technique, we aim to enhance the level of planting automation and optimize resource allocation." @default.
- W4385877165 created "2023-08-17" @default.
- W4385877165 creator A5002351235 @default.
- W4385877165 creator A5011178167 @default.
- W4385877165 creator A5033112541 @default.
- W4385877165 creator A5046711606 @default.
- W4385877165 creator A5065187795 @default.
- W4385877165 creator A5076538075 @default.
- W4385877165 date "2023-08-16" @default.
- W4385877165 modified "2023-09-27" @default.
- W4385877165 title "Feature enhancement guided network for yield estimation of high-density jujube" @default.
- W4385877165 cites W1892082890 @default.
- W4385877165 cites W1925668245 @default.
- W4385877165 cites W1983016117 @default.
- W4385877165 cites W2045030913 @default.
- W4385877165 cites W2097117768 @default.
- W4385877165 cites W2109934232 @default.
- W4385877165 cites W2112796928 @default.
- W4385877165 cites W2134974756 @default.
- W4385877165 cites W2183320018 @default.
- W4385877165 cites W2194775991 @default.
- W4385877165 cites W2238609161 @default.
- W4385877165 cites W2409375369 @default.
- W4385877165 cites W2463631526 @default.
- W4385877165 cites W2565639579 @default.
- W4385877165 cites W2586917416 @default.
- W4385877165 cites W2901871634 @default.
- W4385877165 cites W2936307272 @default.
- W4385877165 cites W2963037989 @default.
- W4385877165 cites W2963523428 @default.
- W4385877165 cites W2964209782 @default.
- W4385877165 cites W2969769846 @default.
- W4385877165 cites W3046305504 @default.
- W4385877165 cites W3048190410 @default.
- W4385877165 cites W3098093879 @default.
- W4385877165 cites W3167244546 @default.
- W4385877165 cites W3199427309 @default.
- W4385877165 cites W4200048875 @default.
- W4385877165 cites W4206753033 @default.
- W4385877165 cites W4280518047 @default.
- W4385877165 cites W4293428658 @default.
- W4385877165 cites W4293584584 @default.
- W4385877165 cites W4295715714 @default.
- W4385877165 cites W639708223 @default.
- W4385877165 doi "https://doi.org/10.1186/s13007-023-01066-2" @default.
- W4385877165 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37587465" @default.
- W4385877165 hasPublicationYear "2023" @default.
- W4385877165 type Work @default.
- W4385877165 citedByCount "1" @default.
- W4385877165 countsByYear W43858771652023 @default.
- W4385877165 crossrefType "journal-article" @default.
- W4385877165 hasAuthorship W4385877165A5002351235 @default.
- W4385877165 hasAuthorship W4385877165A5011178167 @default.
- W4385877165 hasAuthorship W4385877165A5033112541 @default.
- W4385877165 hasAuthorship W4385877165A5046711606 @default.
- W4385877165 hasAuthorship W4385877165A5065187795 @default.
- W4385877165 hasAuthorship W4385877165A5076538075 @default.
- W4385877165 hasBestOaLocation W43858771651 @default.
- W4385877165 hasConcept C104317684 @default.
- W4385877165 hasConcept C105795698 @default.
- W4385877165 hasConcept C119857082 @default.
- W4385877165 hasConcept C124101348 @default.
- W4385877165 hasConcept C138885662 @default.
- W4385877165 hasConcept C153180895 @default.
- W4385877165 hasConcept C154945302 @default.
- W4385877165 hasConcept C185429906 @default.
- W4385877165 hasConcept C185592680 @default.
- W4385877165 hasConcept C2776401178 @default.
- W4385877165 hasConcept C33923547 @default.
- W4385877165 hasConcept C41008148 @default.
- W4385877165 hasConcept C41895202 @default.
- W4385877165 hasConcept C55493867 @default.
- W4385877165 hasConcept C63479239 @default.
- W4385877165 hasConcept C71134354 @default.
- W4385877165 hasConcept C83546350 @default.
- W4385877165 hasConceptScore W4385877165C104317684 @default.
- W4385877165 hasConceptScore W4385877165C105795698 @default.
- W4385877165 hasConceptScore W4385877165C119857082 @default.
- W4385877165 hasConceptScore W4385877165C124101348 @default.
- W4385877165 hasConceptScore W4385877165C138885662 @default.
- W4385877165 hasConceptScore W4385877165C153180895 @default.
- W4385877165 hasConceptScore W4385877165C154945302 @default.
- W4385877165 hasConceptScore W4385877165C185429906 @default.
- W4385877165 hasConceptScore W4385877165C185592680 @default.
- W4385877165 hasConceptScore W4385877165C2776401178 @default.
- W4385877165 hasConceptScore W4385877165C33923547 @default.
- W4385877165 hasConceptScore W4385877165C41008148 @default.
- W4385877165 hasConceptScore W4385877165C41895202 @default.
- W4385877165 hasConceptScore W4385877165C55493867 @default.
- W4385877165 hasConceptScore W4385877165C63479239 @default.
- W4385877165 hasConceptScore W4385877165C71134354 @default.
- W4385877165 hasConceptScore W4385877165C83546350 @default.
- W4385877165 hasFunder F4320321001 @default.
- W4385877165 hasIssue "1" @default.
- W4385877165 hasLocation W43858771651 @default.
- W4385877165 hasLocation W43858771652 @default.
- W4385877165 hasOpenAccess W4385877165 @default.
- W4385877165 hasPrimaryLocation W43858771651 @default.
- W4385877165 hasRelatedWork W2076520961 @default.
- W4385877165 hasRelatedWork W2382607599 @default.