Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385877213> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W4385877213 endingPage "2275" @default.
- W4385877213 startingPage "2269" @default.
- W4385877213 abstract "Objectives: To develop an optimum hybrid approach for lung cancer detection by multiple feature subset extraction and selection based on SVM-weights and Genetic Algorithm (GA-NN) in order to improve the performance measures such as accuracy, sensitivity and specificity. Methods: Initially in preprocessing phase, Computed Tomography (CT) lung images are de-noised using median filter and enhanced using contrast stretching. In the next phase, candidate patch extraction is formed and Gray Level Co-occurrence Matrix (GLCM) and Local Binary Pattern (LBP) features are extracted. This is followed by feature selection using Genetic Algorithm-Neural Network (GA-NN) with SVM weights. Finally, images are classified as cancerous and non-cancerous using multiple classifiers (SVM and KNN). For this research work, CT lung images are collected form LIDC dataset. Around 500 images are used out of which 70% is used for training and 30% is used for testing. Findings: From simulation results and comparative analysis, it is observed that GANN with SVM weights result in better predictive performance metrics with notable improvements. The suggested feature subset reduction outperforms current techniques for detection of lung cancer in CT images. The proposed method has resulted in improved accuracy, specificity and sensitivity by 95.8%, 91.3% and 93.5% respectively which is higher than the existing approaches. Novelty: This work presents a novel approach to detect the lung cancer by multiple feature subset extraction and selection based on SVM-Weights and Genetic Algorithm - Neural Network (GA-NN) with improved accuracy, sensitivity and specificity. Keywords: Gray Level Cooccurrence Matrix (GLCM); Genetic AlgorithmNeural Network (GANN); KNearest Neighbor (KNN); Local Binary Pattern (LBP); Support Vector Machine (SVM)" @default.
- W4385877213 created "2023-08-17" @default.
- W4385877213 creator A5027693209 @default.
- W4385877213 creator A5038586139 @default.
- W4385877213 creator A5059652779 @default.
- W4385877213 creator A5078481381 @default.
- W4385877213 date "2023-08-14" @default.
- W4385877213 modified "2023-09-26" @default.
- W4385877213 title "Lung Cancer Detection by Multiple Feature Subset Extraction and Selection based on SVM-Weights and Genetic Algorithm-Neural Network" @default.
- W4385877213 doi "https://doi.org/10.17485/ijst/v16i29.1093" @default.
- W4385877213 hasPublicationYear "2023" @default.
- W4385877213 type Work @default.
- W4385877213 citedByCount "0" @default.
- W4385877213 crossrefType "journal-article" @default.
- W4385877213 hasAuthorship W4385877213A5027693209 @default.
- W4385877213 hasAuthorship W4385877213A5038586139 @default.
- W4385877213 hasAuthorship W4385877213A5059652779 @default.
- W4385877213 hasAuthorship W4385877213A5078481381 @default.
- W4385877213 hasBestOaLocation W43858772131 @default.
- W4385877213 hasConcept C12267149 @default.
- W4385877213 hasConcept C127413603 @default.
- W4385877213 hasConcept C148483581 @default.
- W4385877213 hasConcept C153180895 @default.
- W4385877213 hasConcept C154945302 @default.
- W4385877213 hasConcept C21200559 @default.
- W4385877213 hasConcept C24326235 @default.
- W4385877213 hasConcept C34736171 @default.
- W4385877213 hasConcept C41008148 @default.
- W4385877213 hasConcept C50644808 @default.
- W4385877213 hasConcept C52622490 @default.
- W4385877213 hasConceptScore W4385877213C12267149 @default.
- W4385877213 hasConceptScore W4385877213C127413603 @default.
- W4385877213 hasConceptScore W4385877213C148483581 @default.
- W4385877213 hasConceptScore W4385877213C153180895 @default.
- W4385877213 hasConceptScore W4385877213C154945302 @default.
- W4385877213 hasConceptScore W4385877213C21200559 @default.
- W4385877213 hasConceptScore W4385877213C24326235 @default.
- W4385877213 hasConceptScore W4385877213C34736171 @default.
- W4385877213 hasConceptScore W4385877213C41008148 @default.
- W4385877213 hasConceptScore W4385877213C50644808 @default.
- W4385877213 hasConceptScore W4385877213C52622490 @default.
- W4385877213 hasIssue "29" @default.
- W4385877213 hasLocation W43858772131 @default.
- W4385877213 hasOpenAccess W4385877213 @default.
- W4385877213 hasPrimaryLocation W43858772131 @default.
- W4385877213 hasRelatedWork W2041399278 @default.
- W4385877213 hasRelatedWork W2056016498 @default.
- W4385877213 hasRelatedWork W2126100045 @default.
- W4385877213 hasRelatedWork W2136184105 @default.
- W4385877213 hasRelatedWork W2160451891 @default.
- W4385877213 hasRelatedWork W2336974148 @default.
- W4385877213 hasRelatedWork W2391959412 @default.
- W4385877213 hasRelatedWork W3174451172 @default.
- W4385877213 hasRelatedWork W2187500075 @default.
- W4385877213 hasRelatedWork W2345184372 @default.
- W4385877213 hasVolume "16" @default.
- W4385877213 isParatext "false" @default.
- W4385877213 isRetracted "false" @default.
- W4385877213 workType "article" @default.