Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385877222> ?p ?o ?g. }
- W4385877222 abstract "The astounding success made by artificial intelligence in healthcare and other fields proves that AI can achieve human-like performance. However, success always comes with challenges. Deep learning algorithms are data-dependent and require large datasets for training. Many junior researchers faced a lack of data, because of a variety of reasons. Medical image acquisition, annotation, and analysis are costly, and their usage is constrained by ethical restrictions. They also require several other resources, such as professional equipment and expertise. That makes it difficult for novice and non-medical researchers to have access to medical data. Thus, as comprehensive as possible, this paper provides a collection of medical image datasets with their associated challenges for deep learning research. We have collected the information of around three hundred datasets and challenges mainly reported between 2007 and 2020 and categorized them into four categories: head & neck, chest & abdomen, pathology & blood, and “others”. The purpose of our paper is to provide a list, as up-to-date and complete as possible, that can be used as a reference to easily find the datasets for medical image analysis and the information related to these datasets." @default.
- W4385877222 created "2023-08-17" @default.
- W4385877222 creator A5009750573 @default.
- W4385877222 creator A5012646916 @default.
- W4385877222 creator A5014888334 @default.
- W4385877222 creator A5022848316 @default.
- W4385877222 creator A5028794275 @default.
- W4385877222 creator A5032996234 @default.
- W4385877222 creator A5042791688 @default.
- W4385877222 creator A5049303874 @default.
- W4385877222 creator A5053328473 @default.
- W4385877222 creator A5062627002 @default.
- W4385877222 creator A5066599847 @default.
- W4385877222 creator A5068876354 @default.
- W4385877222 creator A5077947981 @default.
- W4385877222 creator A5089642645 @default.
- W4385877222 date "2023-08-16" @default.
- W4385877222 modified "2023-10-18" @default.
- W4385877222 title "A Systematic Collection of Medical Image Datasets for Deep Learning" @default.
- W4385877222 cites W1641498739 @default.
- W4385877222 cites W1794121648 @default.
- W4385877222 cites W1883146913 @default.
- W4385877222 cites W1901129140 @default.
- W4385877222 cites W1986649315 @default.
- W4385877222 cites W1990919544 @default.
- W4385877222 cites W1991370230 @default.
- W4385877222 cites W2028657354 @default.
- W4385877222 cites W2030262610 @default.
- W4385877222 cites W2031489346 @default.
- W4385877222 cites W2045898750 @default.
- W4385877222 cites W2046105679 @default.
- W4385877222 cites W2046289434 @default.
- W4385877222 cites W2049256041 @default.
- W4385877222 cites W2053934116 @default.
- W4385877222 cites W2062140168 @default.
- W4385877222 cites W2074598933 @default.
- W4385877222 cites W2082304218 @default.
- W4385877222 cites W2083927153 @default.
- W4385877222 cites W2097267381 @default.
- W4385877222 cites W2099698084 @default.
- W4385877222 cites W2101135654 @default.
- W4385877222 cites W2106033751 @default.
- W4385877222 cites W2107030642 @default.
- W4385877222 cites W2107871626 @default.
- W4385877222 cites W2112796928 @default.
- W4385877222 cites W2124260444 @default.
- W4385877222 cites W2124932867 @default.
- W4385877222 cites W2130125423 @default.
- W4385877222 cites W2135003422 @default.
- W4385877222 cites W2137013440 @default.
- W4385877222 cites W2150534249 @default.
- W4385877222 cites W2153431772 @default.
- W4385877222 cites W2154240563 @default.
- W4385877222 cites W2155513557 @default.
- W4385877222 cites W2159740825 @default.
- W4385877222 cites W2164160732 @default.
- W4385877222 cites W2166401924 @default.
- W4385877222 cites W2183402830 @default.
- W4385877222 cites W2257979135 @default.
- W4385877222 cites W2327084999 @default.
- W4385877222 cites W2401791909 @default.
- W4385877222 cites W2412453619 @default.
- W4385877222 cites W2425380982 @default.
- W4385877222 cites W2509685700 @default.
- W4385877222 cites W2547736356 @default.
- W4385877222 cites W2561512519 @default.
- W4385877222 cites W2593013519 @default.
- W4385877222 cites W2600642189 @default.
- W4385877222 cites W2604796850 @default.
- W4385877222 cites W2606483217 @default.
- W4385877222 cites W2618530766 @default.
- W4385877222 cites W2619902663 @default.
- W4385877222 cites W2624092670 @default.
- W4385877222 cites W2753825789 @default.
- W4385877222 cites W2758694956 @default.
- W4385877222 cites W2764279517 @default.
- W4385877222 cites W2766753387 @default.
- W4385877222 cites W2788633781 @default.
- W4385877222 cites W2805886241 @default.
- W4385877222 cites W2806070179 @default.
- W4385877222 cites W2849179291 @default.
- W4385877222 cites W2852898378 @default.
- W4385877222 cites W2888538030 @default.
- W4385877222 cites W2895720320 @default.
- W4385877222 cites W2897938635 @default.
- W4385877222 cites W2909704326 @default.
- W4385877222 cites W2911039251 @default.
- W4385877222 cites W2911462778 @default.
- W4385877222 cites W2919070891 @default.
- W4385877222 cites W2920149494 @default.
- W4385877222 cites W2949290395 @default.
- W4385877222 cites W2950182561 @default.
- W4385877222 cites W2952735543 @default.
- W4385877222 cites W2953531386 @default.
- W4385877222 cites W2956228567 @default.
- W4385877222 cites W2963341661 @default.
- W4385877222 cites W2964083058 @default.
- W4385877222 cites W2981994674 @default.
- W4385877222 cites W2982316857 @default.
- W4385877222 cites W2986235590 @default.