Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385877275> ?p ?o ?g. }
- W4385877275 endingPage "12437" @default.
- W4385877275 startingPage "12437" @default.
- W4385877275 abstract "While artificial intelligence (AI) has had a great impact on the global economy, it has also brought new hope and opportunities for environmental protection. In this context, the authors of this paper collected balanced panel data for 30 Chinese provinces during 2006–2019 and studied the impact of AI development on local carbon emissions by using a two-way fixed-effect model. The results show that AI has significantly lowered carbon emissions. Using a series of robustness tests and instrumental variable (IV) analysis, it was found that the results are still reliable. Furthermore, mechanism analysis revealed that AI mainly reduces carbon emissions by improving energy structure and technological innovation. The lower the dependence on fossil energy, the higher technological innovation becomes, and the better the carbon reduction effect of AI. In addition, the regional heterogeneity test detected that the emission reduction effect of AI is best in the East, followed by the West, and not significant in the Central region. Therefore, to fully exploit the positive effects of AI on carbon emissions, this paper suggests accelerating intelligent transformation, formulating differentiated AI development strategies, promoting the green transformation of energy usage, and strengthening local human capital accumulation." @default.
- W4385877275 created "2023-08-17" @default.
- W4385877275 creator A5077329763 @default.
- W4385877275 creator A5080263367 @default.
- W4385877275 date "2023-08-16" @default.
- W4385877275 modified "2023-10-16" @default.
- W4385877275 title "Is There a Conflict between Automation and Environment? Implications of Artificial Intelligence for Carbon Emissions in China" @default.
- W4385877275 cites W1959870581 @default.
- W4385877275 cites W1973654174 @default.
- W4385877275 cites W1989299397 @default.
- W4385877275 cites W1991786179 @default.
- W4385877275 cites W2009821691 @default.
- W4385877275 cites W2041307486 @default.
- W4385877275 cites W2044973706 @default.
- W4385877275 cites W2062433677 @default.
- W4385877275 cites W2067793019 @default.
- W4385877275 cites W2095165363 @default.
- W4385877275 cites W2103468194 @default.
- W4385877275 cites W2164757744 @default.
- W4385877275 cites W2476635234 @default.
- W4385877275 cites W2808552269 @default.
- W4385877275 cites W2892380133 @default.
- W4385877275 cites W2898213136 @default.
- W4385877275 cites W2922463371 @default.
- W4385877275 cites W2971532241 @default.
- W4385877275 cites W2985105610 @default.
- W4385877275 cites W3016366151 @default.
- W4385877275 cites W3020698913 @default.
- W4385877275 cites W3020807179 @default.
- W4385877275 cites W3021644002 @default.
- W4385877275 cites W3036506385 @default.
- W4385877275 cites W3042413463 @default.
- W4385877275 cites W3042547262 @default.
- W4385877275 cites W3043223142 @default.
- W4385877275 cites W3087604129 @default.
- W4385877275 cites W3093801951 @default.
- W4385877275 cites W3097302983 @default.
- W4385877275 cites W3113657328 @default.
- W4385877275 cites W3122245868 @default.
- W4385877275 cites W3124968295 @default.
- W4385877275 cites W3136045037 @default.
- W4385877275 cites W3137043860 @default.
- W4385877275 cites W3162173904 @default.
- W4385877275 cites W3175534051 @default.
- W4385877275 cites W3177752023 @default.
- W4385877275 cites W3179206163 @default.
- W4385877275 cites W3199514852 @default.
- W4385877275 cites W3207213708 @default.
- W4385877275 cites W3207767104 @default.
- W4385877275 cites W3210207493 @default.
- W4385877275 cites W4200520036 @default.
- W4385877275 cites W4210251384 @default.
- W4385877275 cites W4224210069 @default.
- W4385877275 cites W4224242339 @default.
- W4385877275 cites W4281249640 @default.
- W4385877275 cites W4281629537 @default.
- W4385877275 cites W4283205652 @default.
- W4385877275 cites W4283791873 @default.
- W4385877275 cites W4284883538 @default.
- W4385877275 cites W4291493435 @default.
- W4385877275 cites W4291669852 @default.
- W4385877275 cites W4291670288 @default.
- W4385877275 cites W4291793483 @default.
- W4385877275 cites W4294534750 @default.
- W4385877275 cites W4295299094 @default.
- W4385877275 cites W4299879791 @default.
- W4385877275 cites W4309460099 @default.
- W4385877275 cites W4311665647 @default.
- W4385877275 cites W4313367780 @default.
- W4385877275 cites W4313827781 @default.
- W4385877275 cites W4317888676 @default.
- W4385877275 cites W4361279511 @default.
- W4385877275 cites W4378673757 @default.
- W4385877275 doi "https://doi.org/10.3390/su151612437" @default.
- W4385877275 hasPublicationYear "2023" @default.
- W4385877275 type Work @default.
- W4385877275 citedByCount "0" @default.
- W4385877275 crossrefType "journal-article" @default.
- W4385877275 hasAuthorship W4385877275A5077329763 @default.
- W4385877275 hasAuthorship W4385877275A5080263367 @default.
- W4385877275 hasBestOaLocation W43858772751 @default.
- W4385877275 hasConcept C104317684 @default.
- W4385877275 hasConcept C104779481 @default.
- W4385877275 hasConcept C11413529 @default.
- W4385877275 hasConcept C115901376 @default.
- W4385877275 hasConcept C119599485 @default.
- W4385877275 hasConcept C127413603 @default.
- W4385877275 hasConcept C134560507 @default.
- W4385877275 hasConcept C140205800 @default.
- W4385877275 hasConcept C149782125 @default.
- W4385877275 hasConcept C162324750 @default.
- W4385877275 hasConcept C166957645 @default.
- W4385877275 hasConcept C175605778 @default.
- W4385877275 hasConcept C185592680 @default.
- W4385877275 hasConcept C18903297 @default.
- W4385877275 hasConcept C191935318 @default.
- W4385877275 hasConcept C205649164 @default.
- W4385877275 hasConcept C2742236 @default.