Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385877360> ?p ?o ?g. }
- W4385877360 abstract "Production and inventory routing problems consider a single-product supply chain operating under a vendor-managed inventory system. A plant creates a production plan and vehicle routes over a planning horizon to replenish its customers at minimum cost. In this paper, we present two- and three-index formulations, implement a branch-and-cut algorithm based on each formulation, and introduce a local search matheuristic-based algorithm to solve the problem. In order to combine all benefits of each algorithm, we design a parallel framework to integrate all three fronts, called the three-front parallel branch-and-cut algorithm (3FP-B&C). We assess the performance of our method on well-known benchmark instances of the inventory routing problem (IRP) and the production routing problem (PRP). The results show that our 3FP-B&C outperforms by far other approaches from the literature. For the 956 feasible small-size IRP instances, our method proves optimality for 746, being the first exact algorithm to solve all instances with up to two vehicles. 3FP-B&C finds 949 best known solutions (BKS) with 153 new BKS (NBKS). For the large-size set, our method provides two new optimal solutions (OPT), and finds 82% of BKS, being 70% of NBKS for instances with up to five vehicles. This result is more than twice the number of BKS considering all heuristic methods from the literature combined. Finally, our 3FP-B&C finds the best lower bounds (BLB) for 1,169/1,316 instances, outperforming all previous exact algorithms. On the PRP, our method obtained 278 OPT out of the 336 instances of benchmark set of small- and medium-size instances being 19 new ones in addition to 335 BKS (74 NBKS) and 313 BLB (52 new ones). On another set of PRP with medium- and large-size instances, our algorithm finds 1,105 BKS out of 1,440 instances with 584 NBKS. Besides that, our 3FP-B&C is the first exact algorithm to solve the instances with an unlimited fleet, providing the first lower bounds for this subset with an average optimality gap of 0.61%. We also address a very large-size instance set, the second exact algorithm to address this set, outperforming the previous approach by far. Finally, a comparative analysis of each front shows the gains of the integrated approach. History: This paper has been accepted for the Transportation Science Special Issue: DIMACS Implementation Challenge: Vehicle Routing. Funding: C. M. Schenekemberg was supported by the São Paulo Research Foundation (FAPESP) [Grant 2020/07145-8]. A. A. Chaves was supported by FAPESP [Grants 2018/15417-8 and 2016/01860-1] and Conselho Nacional de Desenvolvimento Científico e Tecnológico [Grants 312747/2021-7 and 405702/2021-3]. L. C. Coelho was supported by the Canadian Natural Sciences and Engineering Research Council [Grant 2019-00094]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2022.0261 ." @default.
- W4385877360 created "2023-08-17" @default.
- W4385877360 creator A5004964195 @default.
- W4385877360 creator A5006575824 @default.
- W4385877360 creator A5048625456 @default.
- W4385877360 creator A5091284694 @default.
- W4385877360 date "2023-08-16" @default.
- W4385877360 modified "2023-10-04" @default.
- W4385877360 title "A Three-Front Parallel Branch-and-Cut Algorithm for Production and Inventory Routing Problems" @default.
- W4385877360 cites W1832376799 @default.
- W4385877360 cites W1975602051 @default.
- W4385877360 cites W1990619572 @default.
- W4385877360 cites W2013828085 @default.
- W4385877360 cites W2018139583 @default.
- W4385877360 cites W2020219826 @default.
- W4385877360 cites W2029242918 @default.
- W4385877360 cites W2033178724 @default.
- W4385877360 cites W2034664894 @default.
- W4385877360 cites W2045719928 @default.
- W4385877360 cites W2050280061 @default.
- W4385877360 cites W2055942436 @default.
- W4385877360 cites W2059210397 @default.
- W4385877360 cites W2064846580 @default.
- W4385877360 cites W2069049565 @default.
- W4385877360 cites W2108728527 @default.
- W4385877360 cites W2108911946 @default.
- W4385877360 cites W2114778474 @default.
- W4385877360 cites W2119601963 @default.
- W4385877360 cites W2121266360 @default.
- W4385877360 cites W2127654349 @default.
- W4385877360 cites W2134657424 @default.
- W4385877360 cites W2135490589 @default.
- W4385877360 cites W2136871443 @default.
- W4385877360 cites W2139076300 @default.
- W4385877360 cites W2516444468 @default.
- W4385877360 cites W2612126268 @default.
- W4385877360 cites W2623765987 @default.
- W4385877360 cites W2733886388 @default.
- W4385877360 cites W2793472661 @default.
- W4385877360 cites W2802765707 @default.
- W4385877360 cites W2884549505 @default.
- W4385877360 cites W2910329828 @default.
- W4385877360 cites W2910844905 @default.
- W4385877360 cites W2946092617 @default.
- W4385877360 cites W2987023879 @default.
- W4385877360 cites W3025850278 @default.
- W4385877360 cites W3033405475 @default.
- W4385877360 cites W3044539208 @default.
- W4385877360 cites W3057503356 @default.
- W4385877360 cites W3082043861 @default.
- W4385877360 cites W3127039848 @default.
- W4385877360 cites W3133585948 @default.
- W4385877360 cites W3171555511 @default.
- W4385877360 cites W3214868035 @default.
- W4385877360 cites W4211083054 @default.
- W4385877360 cites W4293255437 @default.
- W4385877360 cites W4313527847 @default.
- W4385877360 cites W4319310318 @default.
- W4385877360 doi "https://doi.org/10.1287/trsc.2022.0261" @default.
- W4385877360 hasPublicationYear "2023" @default.
- W4385877360 type Work @default.
- W4385877360 citedByCount "0" @default.
- W4385877360 crossrefType "journal-article" @default.
- W4385877360 hasAuthorship W4385877360A5004964195 @default.
- W4385877360 hasAuthorship W4385877360A5006575824 @default.
- W4385877360 hasAuthorship W4385877360A5048625456 @default.
- W4385877360 hasAuthorship W4385877360A5091284694 @default.
- W4385877360 hasConcept C108713360 @default.
- W4385877360 hasConcept C11413529 @default.
- W4385877360 hasConcept C126255220 @default.
- W4385877360 hasConcept C13280743 @default.
- W4385877360 hasConcept C139719470 @default.
- W4385877360 hasConcept C162324750 @default.
- W4385877360 hasConcept C173801870 @default.
- W4385877360 hasConcept C17744445 @default.
- W4385877360 hasConcept C185798385 @default.
- W4385877360 hasConcept C199539241 @default.
- W4385877360 hasConcept C205649164 @default.
- W4385877360 hasConcept C2778028134 @default.
- W4385877360 hasConcept C2778348673 @default.
- W4385877360 hasConcept C28761237 @default.
- W4385877360 hasConcept C31258907 @default.
- W4385877360 hasConcept C33923547 @default.
- W4385877360 hasConcept C41008148 @default.
- W4385877360 hasConcept C44104985 @default.
- W4385877360 hasConcept C50797617 @default.
- W4385877360 hasConcept C56086750 @default.
- W4385877360 hasConcept C74172769 @default.
- W4385877360 hasConcept C93693863 @default.
- W4385877360 hasConceptScore W4385877360C108713360 @default.
- W4385877360 hasConceptScore W4385877360C11413529 @default.
- W4385877360 hasConceptScore W4385877360C126255220 @default.
- W4385877360 hasConceptScore W4385877360C13280743 @default.
- W4385877360 hasConceptScore W4385877360C139719470 @default.
- W4385877360 hasConceptScore W4385877360C162324750 @default.
- W4385877360 hasConceptScore W4385877360C173801870 @default.
- W4385877360 hasConceptScore W4385877360C17744445 @default.
- W4385877360 hasConceptScore W4385877360C185798385 @default.
- W4385877360 hasConceptScore W4385877360C199539241 @default.
- W4385877360 hasConceptScore W4385877360C205649164 @default.