Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385877478> ?p ?o ?g. }
- W4385877478 abstract "We analyze Mueller's QCD dipole wave function evolution in the double logarithm approximation (DLA). Using complex analytical methods, we show that the distribution of the dipole in the wave function (gluon multiplicity distribution) asymptotically satisfies the Koba-Nielsen-Olesen (KNO) scaling, with a nontrivial scaling function $f(z)$ with $z=frac{n}{overline{n}}$. The scaling function decays exponentially as $2(2.55{)}^{2}z{e}^{ensuremath{-}frac{z}{0.3917}}$ at large $z$, while its growth is log-normal as ${e}^{ensuremath{-}frac{1}{2}{mathrm{ln}}^{2}z}$ for small $z$. A detailed analysis of the Fourier-Laplace transform of $f(z)$ allows for performing the inverse Fourier transform and accessing the nonasymptotic bulk region around the peak. The bulk and asymptotic results are shown to be in good agreement with the measured hadronic multiplicities in DIS, as reported by the H1 Collaboration at HERA in the region of large ${Q}^{2}$. A numerical tabulation of $f(z)$ is included. Remarkably, the same scaling function is found to emerge in the resummation of double logarithms in the evolution of jets. Using the generating function approach, we show why this is the case. The absence of KNO scaling in noncritical and super-renormalizable theories is briefly discussed. We also discuss the universal character of the entanglement entropy in the KNO scaling limit and its measurement using the emitted multiplicities in DIS and ${e}^{+}{e}^{ensuremath{-}}$ annihilation." @default.
- W4385877478 created "2023-08-17" @default.
- W4385877478 creator A5032801712 @default.
- W4385877478 creator A5053604957 @default.
- W4385877478 creator A5073910184 @default.
- W4385877478 date "2023-08-16" @default.
- W4385877478 modified "2023-10-16" @default.
- W4385877478 title "Mueller’s dipole wave function in QCD: Emergent Koba-Nielsen-Olesen scaling in the double logarithm limit" @default.
- W4385877478 cites W1497196551 @default.
- W4385877478 cites W1505777436 @default.
- W4385877478 cites W1674491907 @default.
- W4385877478 cites W1966575957 @default.
- W4385877478 cites W1967813587 @default.
- W4385877478 cites W1969552299 @default.
- W4385877478 cites W1971645788 @default.
- W4385877478 cites W1977512222 @default.
- W4385877478 cites W1977928007 @default.
- W4385877478 cites W1982845654 @default.
- W4385877478 cites W1984667414 @default.
- W4385877478 cites W1999089379 @default.
- W4385877478 cites W2004649987 @default.
- W4385877478 cites W2016753101 @default.
- W4385877478 cites W2016845263 @default.
- W4385877478 cites W2017562297 @default.
- W4385877478 cites W2019232979 @default.
- W4385877478 cites W2019692968 @default.
- W4385877478 cites W2045472496 @default.
- W4385877478 cites W2053387157 @default.
- W4385877478 cites W2055032269 @default.
- W4385877478 cites W2055422327 @default.
- W4385877478 cites W2055793058 @default.
- W4385877478 cites W2058338895 @default.
- W4385877478 cites W2066900073 @default.
- W4385877478 cites W2067215956 @default.
- W4385877478 cites W2068121455 @default.
- W4385877478 cites W2069840277 @default.
- W4385877478 cites W2072669978 @default.
- W4385877478 cites W2078841583 @default.
- W4385877478 cites W2146478425 @default.
- W4385877478 cites W2150094752 @default.
- W4385877478 cites W2151906177 @default.
- W4385877478 cites W2157155801 @default.
- W4385877478 cites W2158050233 @default.
- W4385877478 cites W2161737270 @default.
- W4385877478 cites W2226431671 @default.
- W4385877478 cites W2481211317 @default.
- W4385877478 cites W2490745309 @default.
- W4385877478 cites W2533889660 @default.
- W4385877478 cites W2591027959 @default.
- W4385877478 cites W2794449504 @default.
- W4385877478 cites W2805657083 @default.
- W4385877478 cites W2904626245 @default.
- W4385877478 cites W2963028800 @default.
- W4385877478 cites W2963374927 @default.
- W4385877478 cites W3036702845 @default.
- W4385877478 cites W3099710338 @default.
- W4385877478 cites W3101306498 @default.
- W4385877478 cites W3101729736 @default.
- W4385877478 cites W3101910052 @default.
- W4385877478 cites W3101963198 @default.
- W4385877478 cites W3102567155 @default.
- W4385877478 cites W3102685735 @default.
- W4385877478 cites W3105855336 @default.
- W4385877478 cites W3111761296 @default.
- W4385877478 cites W3132233577 @default.
- W4385877478 cites W3203875381 @default.
- W4385877478 cites W3205414326 @default.
- W4385877478 cites W4205330101 @default.
- W4385877478 cites W4221160074 @default.
- W4385877478 cites W4226028895 @default.
- W4385877478 cites W4226269986 @default.
- W4385877478 cites W4237203551 @default.
- W4385877478 cites W4313408480 @default.
- W4385877478 cites W4360873914 @default.
- W4385877478 doi "https://doi.org/10.1103/physrevd.108.034017" @default.
- W4385877478 hasPublicationYear "2023" @default.
- W4385877478 type Work @default.
- W4385877478 citedByCount "0" @default.
- W4385877478 crossrefType "journal-article" @default.
- W4385877478 hasAuthorship W4385877478A5032801712 @default.
- W4385877478 hasAuthorship W4385877478A5053604957 @default.
- W4385877478 hasAuthorship W4385877478A5073910184 @default.
- W4385877478 hasBestOaLocation W43858774781 @default.
- W4385877478 hasConcept C102519508 @default.
- W4385877478 hasConcept C109214941 @default.
- W4385877478 hasConcept C117137515 @default.
- W4385877478 hasConcept C121332964 @default.
- W4385877478 hasConcept C134306372 @default.
- W4385877478 hasConcept C186603090 @default.
- W4385877478 hasConcept C19694890 @default.
- W4385877478 hasConcept C201941533 @default.
- W4385877478 hasConcept C2524010 @default.
- W4385877478 hasConcept C2776103971 @default.
- W4385877478 hasConcept C2778409180 @default.
- W4385877478 hasConcept C33923547 @default.
- W4385877478 hasConcept C37914503 @default.
- W4385877478 hasConcept C39927690 @default.
- W4385877478 hasConcept C62520636 @default.
- W4385877478 hasConcept C99844830 @default.
- W4385877478 hasConceptScore W4385877478C102519508 @default.