Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385877626> ?p ?o ?g. }
- W4385877626 endingPage "4120" @default.
- W4385877626 startingPage "4120" @default.
- W4385877626 abstract "The prevalence of oral potentially malignant disorders (OPMDs) and oral cancer is surging in low- and middle-income countries. A lack of resources for population screening in remote locations delays the detection of these lesions in the early stages and contributes to higher mortality and a poor quality of life. Digital imaging and artificial intelligence (AI) are promising tools for cancer screening. This study aimed to evaluate the utility of AI-based techniques for detecting OPMDs in the Indian population using photographic images of oral cavities captured using a smartphone. A dataset comprising 1120 suspicious and 1058 non-suspicious oral cavity photographic images taken by trained front-line healthcare workers (FHWs) was used for evaluating the performance of different deep learning models based on convolution (DenseNets) and Transformer (Swin) architectures. The best-performing model was also tested on an additional independent test set comprising 440 photographic images taken by untrained FHWs (set I). DenseNet201 and Swin Transformer (base) models show high classification performance with an F1-score of 0.84 (CI 0.79–0.89) and 0.83 (CI 0.78–0.88) on the internal test set, respectively. However, the performance of models decreases on test set I, which has considerable variation in the image quality, with the best F1-score of 0.73 (CI 0.67–0.78) obtained using DenseNet201. The proposed AI model has the potential to identify suspicious and non-suspicious oral lesions using photographic images. This simplified image-based AI solution can assist in screening, early detection, and prompt referral for OPMDs." @default.
- W4385877626 created "2023-08-17" @default.
- W4385877626 creator A5001828605 @default.
- W4385877626 creator A5003605323 @default.
- W4385877626 creator A5005417132 @default.
- W4385877626 creator A5017945905 @default.
- W4385877626 creator A5023217610 @default.
- W4385877626 creator A5049267481 @default.
- W4385877626 creator A5054734406 @default.
- W4385877626 creator A5060336051 @default.
- W4385877626 creator A5064447452 @default.
- W4385877626 creator A5068076581 @default.
- W4385877626 creator A5080274951 @default.
- W4385877626 date "2023-08-16" @default.
- W4385877626 modified "2023-09-26" @default.
- W4385877626 title "AI-Assisted Screening of Oral Potentially Malignant Disorders Using Smartphone-Based Photographic Images" @default.
- W4385877626 cites W2001299351 @default.
- W4385877626 cites W2009220795 @default.
- W4385877626 cites W2009857235 @default.
- W4385877626 cites W2099321184 @default.
- W4385877626 cites W2176559250 @default.
- W4385877626 cites W2339098810 @default.
- W4385877626 cites W2592929672 @default.
- W4385877626 cites W2805029945 @default.
- W4385877626 cites W2896469379 @default.
- W4385877626 cites W2902690370 @default.
- W4385877626 cites W2915217532 @default.
- W4385877626 cites W2952163116 @default.
- W4385877626 cites W2962858109 @default.
- W4385877626 cites W2963446712 @default.
- W4385877626 cites W2964350391 @default.
- W4385877626 cites W3044073403 @default.
- W4385877626 cites W3088255189 @default.
- W4385877626 cites W3095906787 @default.
- W4385877626 cites W3122230257 @default.
- W4385877626 cites W3129461555 @default.
- W4385877626 cites W3137014685 @default.
- W4385877626 cites W3171108477 @default.
- W4385877626 cites W3174000910 @default.
- W4385877626 cites W3190612931 @default.
- W4385877626 cites W3196077426 @default.
- W4385877626 cites W3201570765 @default.
- W4385877626 cites W4205164650 @default.
- W4385877626 cites W4210633570 @default.
- W4385877626 cites W4223924685 @default.
- W4385877626 cites W4285739681 @default.
- W4385877626 cites W4292608422 @default.
- W4385877626 cites W4293105592 @default.
- W4385877626 cites W4319748083 @default.
- W4385877626 doi "https://doi.org/10.3390/cancers15164120" @default.
- W4385877626 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37627148" @default.
- W4385877626 hasPublicationYear "2023" @default.
- W4385877626 type Work @default.
- W4385877626 citedByCount "0" @default.
- W4385877626 crossrefType "journal-article" @default.
- W4385877626 hasAuthorship W4385877626A5001828605 @default.
- W4385877626 hasAuthorship W4385877626A5003605323 @default.
- W4385877626 hasAuthorship W4385877626A5005417132 @default.
- W4385877626 hasAuthorship W4385877626A5017945905 @default.
- W4385877626 hasAuthorship W4385877626A5023217610 @default.
- W4385877626 hasAuthorship W4385877626A5049267481 @default.
- W4385877626 hasAuthorship W4385877626A5054734406 @default.
- W4385877626 hasAuthorship W4385877626A5060336051 @default.
- W4385877626 hasAuthorship W4385877626A5064447452 @default.
- W4385877626 hasAuthorship W4385877626A5068076581 @default.
- W4385877626 hasAuthorship W4385877626A5080274951 @default.
- W4385877626 hasBestOaLocation W43858776261 @default.
- W4385877626 hasConcept C115961682 @default.
- W4385877626 hasConcept C154945302 @default.
- W4385877626 hasConcept C169903167 @default.
- W4385877626 hasConcept C19527891 @default.
- W4385877626 hasConcept C2776135927 @default.
- W4385877626 hasConcept C2908647359 @default.
- W4385877626 hasConcept C41008148 @default.
- W4385877626 hasConcept C512399662 @default.
- W4385877626 hasConcept C55020928 @default.
- W4385877626 hasConcept C71924100 @default.
- W4385877626 hasConcept C99454951 @default.
- W4385877626 hasConceptScore W4385877626C115961682 @default.
- W4385877626 hasConceptScore W4385877626C154945302 @default.
- W4385877626 hasConceptScore W4385877626C169903167 @default.
- W4385877626 hasConceptScore W4385877626C19527891 @default.
- W4385877626 hasConceptScore W4385877626C2776135927 @default.
- W4385877626 hasConceptScore W4385877626C2908647359 @default.
- W4385877626 hasConceptScore W4385877626C41008148 @default.
- W4385877626 hasConceptScore W4385877626C512399662 @default.
- W4385877626 hasConceptScore W4385877626C55020928 @default.
- W4385877626 hasConceptScore W4385877626C71924100 @default.
- W4385877626 hasConceptScore W4385877626C99454951 @default.
- W4385877626 hasIssue "16" @default.
- W4385877626 hasLocation W43858776261 @default.
- W4385877626 hasLocation W43858776262 @default.
- W4385877626 hasOpenAccess W4385877626 @default.
- W4385877626 hasPrimaryLocation W43858776261 @default.
- W4385877626 hasRelatedWork W2042489430 @default.
- W4385877626 hasRelatedWork W2053221007 @default.
- W4385877626 hasRelatedWork W2748952813 @default.
- W4385877626 hasRelatedWork W2899084033 @default.